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1. Introduction

Xyce is Sandia National Laboratories’ SPICE-compatible high-performance analog circuit
simulator, written to support the simulation needs of the laboratories’ electrical designers.
It has the capability to solve extremely large circuit problems on large-scale parallel com-
puting platforms, and contains device models specifically tailored to meet Sandia’s needs.

During the development of other simulation codes at Sandia, it has often been necessary
to include simulation of a driving circuit to provide boundary condtions for some other
physical domain such as electromagnetics or device physics. One approach often taken
in these codes is to build simple circuit simulation capability into their primary simulator,
but this often limits the driving circuit to very simple designs; in many cases, the circuit
simulators in these codes could only simulate linear devices such as resistors, capacitors,
and inductors. Since Xyce is a fully capable, high-performance circuit simulator with
advanced device models, there is value in providing a mechanism for external simulation
codes to use Xyce as their circuit simulator.

In earlier work[1], we developed a mechanism for coupling Xyce to ALEGRA[2] in order
to simulate coil guns, which we called “Xygra.” In this scheme, ALEGRA would simulate
the electomagnetics and dynamics problem for a small time step, then pass information
to Xyce that allowed it to simulate the behavior of the circuit over that small time step as if
the entire electromagnetics problem were a single circuit device. Control passed back and
forth between Xyce and ALEGRA until the entire desired simulation period was complete.
The Xygra coupling scheme was very much tailored to the coil gun problem, in that the
specific form of the information passed from ALEGRA to Xyce was fixed, and the device
took parameters that explicitly referenced features of that problem, such as the number of
windings in a coil and number of coils.

Given the success of the Xygra approach for the coil gun problem, we were asked to
explore the possibility of generalizing the coupling interface so that it could be used more
flexibly on a wider variety of circuit/mesh coupling problems. Furthermore, there is a
growing interest in coupling frequency-domain electromagnetic simulators to Xyce, and
performing the frequency-domain analyses that Xyce provides such as harmonic balance.

The experiences of the Xygra project and the desire to extend the usefulness of the cou-
pling capability have led to the development of a new coupling scheme that is extremely
general, and that is extensible to the frequency domain as well as time domain. Further,
as part of the development we have created a general mechanism for communicating sim-
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ulation results from Xyce to the coupled simulator that eliminates the need for reading and
parsing Xyce output files, and allows the external code to treat Xyce solution information
on equal footing with its own for analysis, output, and plotting purposes.

This report documents how this coupling scheme works, the API used to access it, and
its limitations.

1.1 Target Audience
This application note is primarily intended for developers of existing simulation codes who
wish to use Xyce in order to add circuit simulation capability to existing capabilities.

The coupling mechanism described in this report is not suitable for all coupled simulation
problems. It is likely to be of most use for problems where the external problem is linear,
or can be reduced to a linearized problem over short time intervals. Highly nonlinear
problems with behaviors that are much faster than the behaviors of the coupled circuit
may require an alternate coupling scheme not addressed here.

Xyce is an application code written in C++, and this document is aimed at developers who
wish to couple other external codes written in C++ to Xyce. Coupling to codes written in
other languages may have additional complicating details that are not explored in this
document.
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2. Xyce overview

In this chapter we give a very brief overview of the mathematical formulation used in Xyce
in order to establish the context for the coupling mechanism. For more detail, the user is
referred to the Xyce mathematical formulation document[3].

2.1 DAE Formulation Overview
At its core, Xyce solves the Differential-Algebraic Equation (DAE)

~F (~x) +
d~Q(~x)

dt
− ~B(t) = 0

for the unknowns ~x. The specific forms of ~F , ~Q, and ~B are established using the for-
malism of modified nodal analysis.[4]. When needed, we will refer to these three vectors
collectively as “the DAE vectors.”

In a general circuit, devices are connected together at nodes, and in the simplest cases
the DAE represents the requirement that the currents flowing into or out of a node must
sum to zero (Kirchhoff’s Current Law, an expression of charge conservation). The solution
vector ~x is made up mostly of the electrical potentials (voltages) at the nodes.

Some devices (such as voltage sources and inductors) may require additional unknowns
(branch currents) to be added to the solution vector, and additional equations (branch
equations) to be introduced into the DAE system. Esoteric devices can even have solu-
tion variables and equations unrelated to the electronic problem (e.g., chemical reaction
dynamics), so long as they can be written in the correct DAE form.

2.2 Device Model overview
Xyce is structured so that each device present in the circuit has associated with it a code
object responsible for loading the elements of ~F , ~Q, and ~B associated with the nodes
between which it is connected. Generally speaking, most elements of ~F are currents,
and most elements of ~Q are charges or fluxes (i.e., terms that must be differentiated with
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respect to time in order to obtain currents). Elements of ~B are explicitly time-dependent
and solution-independent forcing terms such as those from independent sources.

2.2.1 Netlisting basics

A circuit is input to Xyce through a text file known as a “netlist.” Complete netlist syntax
descriptions are provided in the Xyce Reference Guide [5], but for the purposes of this
document we will provide a brief introduction to establish a context for our examples for
the benefit of users who may not already be familiar with SPICE simulation.

Each line of the netlist represents either a discrete device in the circuit or a directive
controlling simulation parameters. Directive lines always begin with a period, while device
lines always begin with a letter. Netlists are case insensitive.

The first line of any netlist is always taken to be a title comment and is ignored.

Any line that begins with an asterisk or a space is taken to be a comment and is ignored.
A common netlisting error is to attempt to indent lines for readability, which results in the
lines being ignored. A semicolon on a line marks an in-line comment; all characters after
the semicolon up to the end of line are ignored.

The first character of a device line determines its device type (e.g., resistor, capacitor,
diode, etc.), and is followed by a unique device name (the characters following the first,
up to but not excluding the first space on the line), then additional information to determine
the connectivity of the device and its controlling parameters.

If the first character of a line is a plus sign, the line is taken as a continuation of the
previous non-comment line.

Numerical quantities may have multipliers applied by following the number with a string
representing the multiplier. The recognized multipliers are:

� “f” (1× 10−15)

� “p” (1× 10−12)

� “n” (1× 10−9)

� “u” (1× 10−6)

� “m” (1× 10−3)

� “k” (1× 103)

� “meg” (1× 106)

14



� “g” (1× 109)

� “t” (1× 1012)

Unrecognized characters following a numerical quantity or the multiplier are ignored. It is
common in SPICE netlists to take advantage of this feature to place unit names after the
quantities knowing that they should be ignored (e.g., “1pf” for “1 picofarad” or “1Ohm”),
but one must be careful not to use unit names that may be mistaken for multipliers (e.g.,
“1Farad”, which would be interpreted as 1× 10−15). Note also that since netlists are case
insensitive, it is necessary to have the three-character text “meg” to denote millions. It is
a common error to use “M” when “meg” is intended, which results in a significant error
because of the case insensitivity.

2.2.2 Circuit nodes, internal nodes, and branch
currents

Each device is connected to some number of circuit nodes, as enumerated in the circuit
netlist given to Xyce. For example:

R1 1 2 2K

defines a resistor “R1” connected between nodes 1 (the positive node) and node 2 (the
negative node), with a resistance of 2000 ohms.

Connecting nodes that are specified on a netlist instance line like this are known as “ex-
ternal” nodes for the device — and in a properly connected circuit, each node should
have at least two devices connected to it. Devices can also have internal variables which
may serve as nodes in the devices’ equivalent internal circuit, but may also be additional
variables with additional associated equations such as branch currents and branch equa-
tions.

The number of external variables is fixed as the number of connecting nodes specified
on the netlist line, but the number and meaning of internal variables are defined by the
device itself. The device set-up code has a set of accessor functions used to query each
device for how many internal variables it needs; this is used to determine the size and
layout of the solution and other vectors. Additional queries are performed to determine
the pattern of interdependency between variables (known as the “Jacobian stamp”), so
that appropriate elements of the sparse Jacobian matrices can be allocated.

Once the circuit topology is determined, it is fixed for the duration of a simulation. The
device is provided information so that it can find the locations of the elements of the
solution and DAE vectors corresponding to its variables, and the locations of the Jacobian
matrix elements that it needs to fill.
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2.2.3 Sign convention

By convention, as a device loads its contributions to the various vectors, it adds a positive
contribution to the ~F vector element associated with a node when it is drawing current (or
for ~Q, charge) from that node, and a negative contribution when sinking current into that
node. As shown by the sign of ~B in the general DAE, the convention for that vector is the
opposite: current drawn from a node adds a negative contribution to ~B.

2.2.4 Device model examples

In order to establish more context for the general external coupling mechanism, this sec-
tion shows how several basic linear electrical devices must load the DAE vectors.

Resistor

The current-voltage relationship of a simple linear resistor is Ohm’s law

V = IR

or
I = GV

with R being the resistance, and G being the conductance (inverse of resistance). No
differentiation with respect to time is needed, nor are there any explicitly time-dependent
terms, so this device would contribute only to the ~F vector.

The netlist line

R1 1 2 2K

defines a 2, 000Ω resistor connected between node 1 (its positive node) and node 2 (its
negative node). By convention, the resistor current is positive when the positive node is at
higher potential than the negative node, meaning that current is drawn from the positive
node and sunk into the negative node.

Therefore, this device would need to retrieve the voltages V1 and V2 (the potentials at
nodes 1 and 2) from the solution vector, compute the voltage drop across the device, and
thence the resistor current:

Ires = (V1 − V2) ∗ (
1

2000
) .

This resistor current would then be added to the element of ~F corresponding to node 1
and subtracted from the element of ~F corresponding to node 2. Considering only the
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contributions of this device and observing the appropriate sign convention, we have

F1 =
(V1 − V2)

2000

F2 = −(V1 − V2)
2000

Capacitor

A simple linear capacitor with constant capacitance holds a charge

Q = CV

with C being the capacitance, and therefore the current through it is

I =
dQ

dt
.

The current through this device contains only a term dependent on a time derivative, and
has no explicitly time-dependent terms, so the device model loads only the ~Q vector.

The netlist line

C1 1 2 1p

defines a capacitor of 1pF between nodes 1 and 2.

To load the DAE vectors, this device would compute the charge on the device as Q =
C ∗ (V1 − V2). It would then add this charge to the element of ~Q corresponding to node
1, and subtract it from the element corresponding to node 2. Again, considering only the
contributions of this one device,

Q1 = (V1 − V2) ∗ 1× 10−12

Q2 = −(V1 − V2) ∗ 1× 10−12 .

Inductor

A linear inductor is an example of a device that must have an additional internal variable
and associated equation. The voltage-current relationship for an inductor is

V =
dφ

dt
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with φ being the flux L ∗ I, L being the inductance, and I being the current through the
device.

For the inductor represented by the netlist line

L1 1 2 1u

representing a 1µH inductor between nodes 1 and 2, this may be written in the appropriate
DAE form as

dLI

dt
− (V1 − V2) = 0 .

The current out of node 1 and into node 2 is I. Unlike devices such as the capacitor or
resistor, the device cannot compute the inductor current directly knowing only the voltages
of the terminals, and therefore the inductor current must be added as an unknown, known
as the inductor’s “branch current”, and must add an equation to the DAE system so that
this unknown may be solved for. We will call this unknown Ibranch.

As a result, the inductor device must declare that it has an additional internal unknown;
Xyce will set up all of the vectors and matrices needed to solve the circuit problem to
include this additional variable.

During device evaluation, the inductor must obtain the value of Ibranch from the solution
vector corresponding to the branch variable requested in addition to the nodal voltages V1
and V2. It then adds Ibranch to the element of ~F corresponding to node 1 and subtracts it
from the element corresponding to node 2. But in addition to loading the elements for the
two nodes, it must also set the elements of ~F and ~Q corresponding to the extra variable
(branch current) — this extra equation is known as the “branch equation”. The branch
equation is

dLIbranch
dt

− (V1 − V2) = 0 ,

and so the device must load the part that is not differentiated with respect to time, −(V1−
V2), into the element of ~F corresponding to the branch current, and LIbranch into the cor-
responding element of ~Q (because this term must be differentiated with respect to time).

As with the resistor and capacitor, considering only this device’s contributions to the DAE
vectors, we have:

F1 = Ibranch

F2 = −Ibranch
Fbranch = −(V1 − V2)
Qbranch = Ibranch ∗ 1× 10−6 .
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Serial RLC network

Consider a two-terminal device implementing a serial RLC network such as the one shown
in figure 2.1. The two terminals, labled “N1” and “N2” in the figure, are the device’s
external nodes. There is an internal node “NI” between the inductor and capacitor. It
is also necessary to include a branch current variable to evaluate the inductor, labeled
“Branch” in the figure. Because the current through the resistor and inductor must be
the same, it is unnecessary to include a third internal variable for the voltage at the node
between the resistor and inductor — one can use the V = IR form of Ohm’s law rather
than the I = GV form to construct the equation set for this macromodel.

Figure 2.1. Series RLC subcircuit as two-terminal device.

The current out of node N1 and into node NI is simply the branch current. The potential
drop across the resistor and inductor together is IbranchR + dLIbranch

dt
, which must be equal

to VN1 − VNI ; taken together, these terms form the branch equation for the device,

IbranchR +
dLIbranch

dt
− (VN1 − VNI) = 0 .

The current out of node NI and into node N2 is simply d
dt

(C ∗ (VNI − VN2)).

The F and Q contributions for this device are therefore:

FN1 = Ibranch

FNI = −Ibranch
Fbranch = Ibranch ∗R− (VN1 − VNI)

FN2 = 0.0

QN1 = 0.0

Qbranch = L ∗ Ibranch
QNI = C ∗ (VNI − VN2)

QN2 = −C ∗ (VNI − VN2) .
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Here we have explicitly shown that this device contributes nothing to the N2 element of ~F
or the N1 element of ~Q.

Closing remarks on examples

The contributions shown above for each device must be added into the global ~F and
~Q vectors representing the entire circuit problem, and while we have not shown it, their
derivatives with respect to the three solution variables must also be computed and added
into the global DAE derivative matrices, d~F

dX
and d ~Q

dX
.

These simple linear devices demonstrate how device models in Xyce construct their con-
tributions to the ~F and ~Q vectors, how a device model may require additional internal
variables, and how additional equations may be added to the DAE system.

In order to couple Xyce to a simulator that does not simply implement standard circuit
elements such as these, one must map the interfaces between the domains appropri-
ately. For example, Xyce will be providing the voltages at the nodes as if they were point
contacts, and is expecting that the DAE vectors be loaded with currents and charges as
if they were feeding into a point contact. Thus, for coupling with a mesh-based simulator,
Xyce’s voltages would need to be applied as boundary conditions on a set of interface
elements such as a side set, and current densities computed by the mesh simulator at
these interfaces would have to be integrated across the set to become nodal currents that
would be loaded into the DAE vectors.

2.3 Numerical solution overview

Xyce solves the DAE via a nested set of solvers. Figure 2.2 illustrates the relationship
between the solvers for a transient analysis[3]. The outermost solver varies for other
analysis types. For example, in a DC steady state calculation the nonlinear solver is the
outermost of these loops.

For the purposes of understanding how to use the coupling interface, the most impor-
tant of these solves to understand is the nonlinear solve. The sequence of operations
performed by the nonlinear solver step is illustrated schematically in figure 2.3.

Xyce’s nonlinear solver implements Newton’s method[3]. At each iteration of the nonlin-
ear solver, all devices are called upon to load their contributions to the DAE vectors and
matrices as computed from the current guess, ~xn. The DAE vectors and matrices are as-
sembled along with terms resulting from the time integration method to create a nonlinear
system

~f(~x,
dx

dt
, t) = 0 .
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Figure 2.2. Xyce solver structure.

Evaluating this function at the current guess and applying Newton’s method leads to a
linear system Jn∆~xn+1 = −fn to be solved for the updated guess, where fn is f evaluated
at the guess ~xn, and Jn is its Jacobian. The new solution ~xn+1 is obtained as ~xn+1 =
~xn + ∆~xn+1. The process is repeated until the convergence criteria are met.

Xyce’s time integration loop also bears some discussion. Xyce uses adaptive time-
stepping with error control. Loosely speaking, Xyce starts from a previously accepted
solution, tentatively advances the simulation time by the current time step and predicts a
first guess at the solution, which is then used as the initial guess for the nonlinear solver.
If the nonlinear solver converges and the local truncation error computed for the time in-
tegration method is within tolerances, the timestep is accepted and simulation proceeds.
If the solution at the tentative time is not accepted, the time step is reduced and a new
solution attempted. This requires that the devices’ models be written in such a manner
that there is no assumption that they will be called only for monotonically increasing times
— from the device model’s point of view it may seem that time jumps backward if one of
these tentative steps is rejected.
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Figure 2.3. Xyce Nonlinear solver process.

2.4 Summary
The preceding sections provide the context needed to use the “General External” coupling
mechanism. The coupling between Xyce and an external code will be handled as a black-
box device, and the linking code between them will be responsible for providing Xyce with
the information it needs to construct its DAE.
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3. General External
Coupling Interface

3.1 Overview
As shown in figure 2.3, at each step of the solution of the circuit problem, Xyce calls upon
each device in the circuit to populate portions of the DAE vectors and their derivatives
with respect to solution variables.

The approach we have taken to generalize the original approach to Xyce/ALEGRA cou-
pling is to define a new device type (the “General External” device), whose device load
function simply calls methods of a user-defined interface object (the “vector compute in-
terface”). An external code defines such an interface object for each simulation domain
required, and associates this object with a specific instance of the general external device
in the Xyce circuit. Each pass that Xyce takes through its nonlinear solve triggers a call
back to the methods of the interface objects for each general external device present in
the netlist.

In broad strokes, the process of coupling is for the user to construct a circuit netlist that
includes both the real circuit elements that Xyce will simulate and special general exter-
nal devices which serve as black-boxes that actually invoke the vector compute interfaces
provided by the external code. The external code then instantiates an object of type
Xyce::Circuit::GenCouplingSimulator, which serves as a control object for Xyce. The ex-
ternal code calls methods of this object to read in the netlist, query for the existence of
coupling devices in it, and to set up those coupling devices. As part of the set up of
coupling devices, the external code calls methods of the GenCouplingSimulator object to
associate a vector compute interface object with each coupling device. Once all set-up is
complete, the external code calls methods of the GenCouplingSimulator object to begin a
Xyce simulation.

This chapter will document how to use the general external device in a circuit netlist, and
how to construct the vector compute interface class to allow an external code to couple
to Xyce by acting as one or more compact models in a Xyce circuit simulation. We will
conclude the chapter with several simple examples.

Detailed documentation of the API used to invoke Xyce as a coupled simulator and the
methods that must be implemented for the interface class will be found in the next chapter.
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3.2 General External Device
In order to couple a circuit simulated by Xyce to a specialized domain simulation run
by another code, we must establish in the Xyce input netlist how the circuit connects to
the external simulation’s input ports. This is done using a special interface device, the
“general external” device.

As noted earlier, devices in netlists are defined by lines whose first character is a letter,
and the type of device is determined by that letter (R for resistor, D for diode, etc.); this
syntax is dictated by SPICE compatibility requirements. Because most of the letters of
the alphabet are already reserved for normal SPICE devices, this makes it difficult to
extend the input syntax to new, esoteric device types. To deal with this limitation, Xyce
has an extension mechanism where if the first character of the line is “Y,” the characters
immediately following the “Y” up to the next space are taken as the device type, and the
next space-delimited word on the line is taken as the unique name; this is used by the
Xyce team to add devices that do not fit into the categories of devices normally simulated
in SPICE. The “general external” device is such a device, and is specified by the string
“YGENEXT” at the beginning of a device line:

YGENEXT mydevice1 1 2

This netlist line defines a two-terminal general external device whose complete name is
“YGENEXT!MYDEVICE1” (the concatenation of the device type and device name). It is
connected betweens nodes 1 and 2.

General external devices can have any number (up to a maximum of 1000) of external
connecting nodes, but due to a limitation in the Xyce parser an additional netlist quirk is
required for Xyce to recognize the line if it has more than two nodes. This quirk is that the
normally-optional model name must be given, even though the general external device
does not take any model parameters:

YGENEXT myotherdevice 1 2 3 4 dummymodel

.model dummymodel genext

As a simple example, a netlist fragment representing the schematic in figure 3.1 that
connects a DC voltage source to a two-terminal external device through a 1K Ohm resistor
would be:

* Example netlist

V1 1 0 5V

R1 1 2 1000

YGENEXT mydevice1 2 0
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Figure 3.1. Example circuit with external device.

This fragment is not enough to run a simulation as it lacks any analysis or output di-
rectives, but it shows how the circuit layout is translated into netlist lines, and how the
coupling device appears simply as another device in the layout.

Once defined in the netlist in this way, Xyce will be able to associate an interface ob-
ject with the device, and call the interface class’ methods when device evaluations are
required. What remains is to define the interface object and associate it with this device
before running the circuit.

3.2.1 YGENEXT lead currents
Each “YGENEXT” device has some number of external nodes (as defined in the netlist).
Such a device interfaces with the rest of the circuit by drawing current from or sinking
current into these connecting nodes. The device itself computes these currents from
solution variables, but sometimes users wish to view this information as part of simulation
results.

As with many other of Xyce’s internal device types, it is possible to print the values of
these currents on Xyce .PRINT lines using the “lead current” notation. The syntax is the
letter “I” followed by a number representing which external node of the device to query,
followed by the name of the device in parentheses. The numbers refer to the position of
the terminal in question, not the node name.

Thus, a three terminal YGENEXT device connected to nodes A, B, and C may be run and
the currents flowing into the device (positive) or out of the device (negative) at each of its
terminals may be printed using the netlist snippet below.

YGENEXT mydevice1 A B C dummymodel

.model dummymodel genext

.print tran I1(YGENEXT!mydevice1) I2(YGENEXT!mydevice1) I3(YGENEXT!mydevice1)

Positive values of lead currents denote current flowing into the device through the given
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terminal, and negative values denote current flowing out of the device at that terminal.

Lead currents of these forms are also legal output fields for the external output capability
and may be used as strings in the requestedOutputs method, described below(4.3.1).

3.3 Interface Class
All communication between an external simulation code and Xyce during computation of
Xyce’s circuit solution is handled through an interface class.

In order to couple an external code to Xyce, that application code must define a class that
derives from the Xyce::Device::VectorComputeInterface abstract interface class, and
must reimplement one or more of the methods of that interface. This is done by including
the header file “N DEV VectorComputeInterface.h” in the application code and defining a
new class that inherits from this abstract interface class. This header file is installed in the
“include” directory that is produced when one installs Xyce from source code using the
“make install” target.

The methods of the interface class must provide to Xyce the contributions to the DAE vec-
tors and their derivative matrices related to the device emulated by the coupled simulator.

The interface object is then associated with a named “YGENEXT” device in the netlist
using the GenCouplingSimulator class’ setVectorLoader method.

There are only three functions defined in the interface that are called by Xyce. One is for
time domain evaluation, and the other two for frequency domain. The application code
may, of course, always define additional methods in the derived class for its own use.

3.3.1 Time domain coupling —
computeXyceVectors

The only method of the interface that absolutely must be implemented is the
computeXyceVectors method; computeXyceVectors is declared as a pure virtual function,
and one cannot instantiate an object of any class inheriting from this interface without
implementing it. The documentation of this function is provided in the API reference in
section 4.2.1.

This method is the one called to load the devices’ vectors and matrices during all time do-
main analyses, in small-signal AC analysis, and in noise analysis. This function is passed
the current simulation time and a Standard Template Library (STL) double-precision vec-
tor containing all of the solution vector values for variables associated with the device.
This vector first contains values of external nodes in the order that they appear on the
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netlist line, followed by values of internal variables. The function is also given references
to STL double-precision vectors into which the application should store contributions to ~F ,
~Q, ~B, and references to two-dimensional vectors into which it should store the derivatives
of ~F and ~Q with respect to solution variables. It is the responsibility of this function to set
the sizes of these vectors and matrices appropriately, then fill them in and return “true.”

If computeXyceVectors sets the size of one or more vectors to zero, then it is taken to
mean that the device contributes nothing to that vector; it is not necessary to return a
vector full of zeros if the device isn’t contributing anything.

The vectors and matrices passed to computeXyceVectors are not the global DAE vectors
and matrices, they are temporary arrays used for the device to load only its own contribu-
tions. Summing of these contributions into the global vectors and matrices is handled by
higher level code internal to Xyce.

Once an interface object is associated with a general external device via a setVectorLoader

call, the general external device will call this computeXyceVectors method every time it is
called upon to provide DAE vector contributions, and it will simply copy the data it receives
from the method call into Xyce’s internal data structures.

As noted in the previous chapter, Xyce calls upon every device to load the DAE vectors
on every Newton step of every nonlinear solve, and the general external device will call
computeXyceVectors every time it is asked to load the DAE vectors. Thus, it is essential
to implement the function in as efficient a manner as possible — one would not want
computeXyceVectors to trigger a full mesh solve of a PDE problem on every call, for
example. This does mean that this coupling method is appropriate mostly for external
problems that are either already linear, can easily be linearized over short time scales, or
for which a simplified surrogate for the full mesh solve can be derived that is valid over
short time scales.

3.3.2 Frequency domain coupling —
computeXyceFDVectors and haveFDLoads

If performing Harmonic Balance simulation in Xyce and coupling Xyce to a frequency
domain simulator, one must implement the computeXyceFDVectors method as well. The
function arguments will be the current frequency value and the solution vector elements
for the current solution guess at this frequency, as well as references to STL containers
for ~F and ~B, and the derivative of ~F with respect to the solution variables . The function
should fill in these vectors from the results of its simulation at this frequency. The ~Q vector
is not used in frequency domain simulation.

If doing a frequency domain simulation in the external code and there is no way to imple-
ment the time-domain computeXyceVectors method in a meaningful way, then one should
implement computeXyceVectors so it simply returns false. Returning false will assure
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that Xyce will exit with a meaningful error message if any attempt is made to perform a
time-domain simulation in Xyce while coupled.

Finally, if implementing computeXyceFDVectors for frequency domain coupling, one must
also reimplement the method haveFDLoads in the interface class to return true. The default
implementation returns false. Xyce calls this function to determine whether or not to use
frequency domain loads from the device. If frequency domain loads are not available
(i.e., if haveFDLoads returns false) and harmonic balance analysis is requested, Xyce will
instead use the time-domain load functions at a series of time sample points, then Fourier
transform the results to obtain the frequency domain contributions.

Frequency domain limitations

As of Xyce release 6.10, no provision has been made in Xyce’s harmonic balance analy-
sis code to allow nonlinear frequency domain models. As a result of this design decision,
the external code’s computeXyceFDVectors method will only be called once for each fre-
quency, and only the contents of the d~F

dX
matrix and the ~B vector it returns are really used

— when ~F is needed, it is obtained by multiplying the derivative matrix by the solution
vector. All that is necessary is that computeXyceFDVectors resize the ~F vector correctly
— the values are never used.

This does mean that if the frequency domain problem in the external code is truly nonlin-
ear, then this coupling method is not yet suitable to couple Xyce to the external simulator.

3.3.3 Examples

Figure 5.1 demonstrates an implementation of a simple linear resistor using the vector
compute interface. It demonstrates correct sizing and loading of the vectors and matrices
needed. An object of this class could be instantiated and associated with a two-terminal
“YGENEXT” device in a circuit and would behave precisely as the internal resistor device
of Xyce. Note also that this class has a setResistance method that is not part of the
coupling API. This method is never called by Xyce itself, but may be used to change the
behavior of the class from outside of Xyce, as one might need to do after processing
instance parameters for an associated “YGENEXT” device.

Figures 5.2 and 5.3 demonstrate the implementation of a linear capacitor for both time-
and frequency-domain simulation. Once associated with a “YGENEXT” device, any anal-
ysis other than harmonic balance will invoke its computeXyceVectors method, and har-
monic balance will invoke its computeXyceFDVectors method.

Finally, figures 5.4, 5.5, 5.6, and 5.7 demonstrate the implementation of a two-terminal se-
rial RLC network as illustrated by the circuit diagram in figure 2.1. This example demon-
strates a device with two external variables (N1 and N2), use of two internal variables

28



(the internal node NI between the inductor and capacitor, and the branch current flowing
through the resistor and capacitor), a sparse Jacobian stamp, and the use of additional
class members not required by the minimum abstract interface. In this simple example
we have simply created a public data member for the Jacobian stamp that is initialized in
the constructor (figure 5.4), which can later be accessed directly in order to be passed
to the setJacStamp method of the general coupling simulator class. It also sets up static
variables to use as indexes into the vectors and matrices for clarity (figure 5.7). The actual
computeXyceVectors function is split between figures 5.5 and 5.6. This example may be
found with detailed comments in the file src/test/GenExtTestHarnesses/testGenCoup.C
of the Xyce source distribution. The application code must use the setNumInternalVars

call to allocate two internal variables to the device, and setJacStamp to use the sparse
jacobian stamp prior to calling the setVectorLoader method to associate the interface
object with a specific “YGENEXT” device.

None of these simple implementations perform any sort of error checking on the sizes
of the solution vectors passed to them; the implementations simply assume they have
always been passed the correct number of solution variables for a two-terminal device.
Neither have we yet demonstrated how to allow retrieval of device parameters from a
netlist, which would be necessary for obtaining appropriate values to pass into their con-
structors. This topic will be discussed in section 4.1.3.

3.4 External Output Class
The general external simulator provides a getSolution method that allows the external
code to obtain the converged solution values for the variables associated with specific
general external devices in the circuit. This is often sufficient, but it can be useful for
external simulators to have access to more information about the circuit than can be
provided in that manner.

Xyce netlists may contain “.PRINT” statements to cause Xyce to emit solution information
to a file. It is always possible for an external code to read these files if needed, but
beginning with Xyce release 6.9, a new facility was added so that external codes could
have all the information available to “.PRINT” lines delivered directly to function calls of
their own design. This is known as the “external outputter” capability.

As with the general external device, external outputters work by having the external code
provide an object that implements an interface class — the methods of these objects are
called by the Xyce output system instead of writing the data to files, and the parameters
of the output are determined by calls to query methods of the object instead of by parsing
a .PRINT line in the netlist.

Access to the external outputter mechanism requires including the Xyce header file
“N IO ExtOutInterface.h” in the application code. This provides the declaration of the
Xyce::IO::ExternalOutputInterface abstract interface class. As with the vector com-
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pute interface, the user must define a new class that inherits from the abstract interface
and implement its methods.

The application code will then call the addOutputInterface method of the GenCouplingSim-
ulator class to add the interface object to a list of outputters kept by Xyce. The external
outputter is then used just as if it had been created by a .PRINT line in the netlist — but
instead of outputting to a file or to the screen, methods of the object are called with the
data that would be output. The application code can then take any action necessary to
handle this data, such as storing it in a database, plotting it, or performing analysis on it.

The methods of the Xyce::IO::ExternalOutputInterface class replace various compo-
nents of a .PRINT line of Xyce. They include query methods, reporting methods, and
output methods.

Query methods of this class are called by Xyce to determine what analysis type (DC,
AC, Transient, etc.) should invoke the outputter, the list of requested output items, and
a unique name for the outputter (generally used only for error reporting). Xyce will call
these methods in order to set up its output stage at the beginning of a run.

Reporting methods are called after initial processing, such as to report parse status of
the requested output values, and to report the actual names of output values that will
be returned (which may differ from the list originally requested either because Xyce has
augmented the list to include a TIME or FREQUENCY column, because wild cards have
been expanded, or because the names have been canonicalized in some manner).

Output methods of the class are called each time Xyce would normally output data for
.PRINT lines. These methods are passed vectors of doubles or complex numbers (as
appropriate to the analysis type) for the requested output quantities.

3.4.1 Examples

A minimal example of an external output interface object is presented in figure 3.2. This
interface object requests only the wildcard output V(*) (all known voltage nodes) for tran-
sient runs, and outputs all data directly to the standard output stream. Its reporting method
reportParseStatus does no error checking, but merely reports to the standard error
stream the parse status of all requested strings. Its output method outputFieldNames

simply outputs the field names as a header; the wild card requested will be expanded by
Xyce and the actual list of all voltage nodes to be printed will be returned to the applica-
tion using this method. Its output method outputReal outputs each set of data on a single
line.

The output interface of figure 3.2 would produce to the standard output stream a data file
very similar to the one that would be created if the netlist had contained the line .print

tran V(*).
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Though this simple example shows a class that takes no arguments in its constructor, and
implements only the minimum subset of the API, one could always create a class that is
more configurable and which contains additional methods to control its operation from the
external code — Xyce only calls methods of this class that are part of the published API,
and the internal details of implementation of this class are entirely up to the user, so long
as it derives from the interface and implements all required methods.

A more extensive example that includes a configurable, but still basic, external output in-
terface class is provided in the file testGenCoup.C in the directory src/test/GenExtTestHarnesses
of the Xyce source tree.
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#include <N IO ExtOutInterface.h>

class ioExampleInterface

: public Xyce::IO::ExternalOutputInterface

{
public:

ioExampleInterface() {};
Xyce::IO::OutputType::OutputType getOutputType()

{
return Xyce::IO::OutputType::TRAN;

};
void requestedOutputs(std::vector<std::string> &outputVars)

{
outputVars.resize(1);

outputVars[0] = "V(*)";

};
void reportParseStatus(std::vector<bool> & statusVec)

{
for (int i=0;i<statusVec.size();i++)

{
std::cout << "Requested output " << i << " is "

<< ( (statusVec[i])? " parseable" : " unparseable")

<< std::endl;

}
};
void outputFieldNames(std::vector<std::string> & outputNames)

{
for(int i=0; i<outputNames.size(); i++)

{
std::cout << outputNames[i] << " ";

}
std::cout << std::endl;

};
void outputReal(std::vector<double> & outputData)

{
for (int i=0;i<outputData.size();i++)

{
std::cout << outputData[i] << " ";

}
std::cout << std::endl;

};
void finishOutput()

{
std::cout << "End of Xyce(TM) Simulation" << std::endl;

};
};

Figure 3.2. Trivial output interface
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3.5 Simulator class

3.5.1 Setup and invocation

Use of the general coupling mechanism requires that the application code instantiate an
object of type Xyce::Circuit::GenCouplingSimulator, which serves as the application’s
control object for Xyce (see section 4.1.1). An example of this instantiation is shown in
figure 4.1.

After instantiation of the GenCouplingSimulator object, the application code calls its
methods to read a netlist, set up any general external devices that appear in the netlist,
register output interface objects, and finalize initialization.

Reading of the netlist and initialization of internal data structures is accomplished by call-
ing the intializeEarly method (section 4.1.2) This method takes arguments similar to
the standard “main” function of C or C++ programs, so the caller must construct a C-style
array of strings representing a command line; the possible command line options are the
same as those that would be used for invoking a standard Xyce binary, and are docu-
mented in the Xyce Reference Guide [5]. An example of this call is shown in figure 4.2.
That example demonstrates calling initializeEarly as if Xyce were invoked with no
arguments other than a netlist name.

After the call to initializeEarly, the application code can query the GenCouplingSimu-
lator object to determine if any general external (“YGENEXT”) devices are present in the
netlist. This is done via the getDeviceNames method(4.1.3), an example of which is shown
in figure 4.3. If present, these devices should be set up using the setNumInternalVars

(4.1.3), setJacStamp(4.1.3), and setVectorLoader(4.1.3) methods.

If making use of the external outputter capability, it is also necessary to instantiate any
external output interface objects and pass them to the addOutputInterface(4.1.3) call in
between the initializeEarly and initializeLate calls.

Once all general external devices and external outputs have been properly set up and
initializeLate(4.1.2) is called, Xyce is ready to begin the coupled simulation. There
are two basic mechanisms for running the simulation.

In the first, using runSimulation(4.1.4), Xyce is instructed to run the entire simulation
as specified in the netlist, making necessary calls back to the vector compute interfaces
along the way. In this case, control is not returned to the external code except through the
interface objects until the simulation is complete. To run in this manner, Xyce is completely
in control of time stepping (for transient simulation), and it is necessary to write the vector
compute interface in such a manner that it can be called for any time value between 0 and
the final requested time in the netlist.
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The second mechanism is for the external code (which may have its own time stepping
algorithm) to call Xyce via the simulateUntil(4.1.4) call. Xyce will simulate only until the
requested time value, then return control to the calling program. In this way, the caller can
simulate the larger problem at specific time intervals, then call upon Xyce to advance its
simulation time only for that short interval.

3.5.2 Compiling and linking with the Xyce library
When Xyce is built and installed, it will have installed a Xyce binary and all of its libraries
and include files into the bin, lib, and include subdirectories (respectively) of the directory
given to the --prefix option of configure when it was run. We will refer to this top-level
directory as $prefix, and assume that Xyce has been built according to the guidance in
the Xyce Building Guide[6].

To build and link an application that uses the general coupling interface of this report, one
requires not only an installed version of Xyce and its libraries, but also the installation of
Trilinos that was used to build Xyce. We will, for the purposes of this section, refer to the
top level installation directory of Trilinos as $archdir, and will assume that Trilinos has
also been built according to the guidance in the Xyce Building Guide.

Xyce depends on many libraries, including not only its own as installed in $prefix/lib,
but also individual package libraries of Trilinos and third party libraries provided by the
operating system, all of which must be linked into any application code that uses Xyce
libraries. Most of these dependencies have been captured well in the “.la” files that libtool
created and installed while building and installing Xyce, and so the simplest path to linking
a code with Xyce is to use libtool and leverage this information.

Compiling with libtool wrappers

Libtool may be invoked both in compile mode and link mode, and this may be the most
straightforward way to build a simple application code against Xyce. The command in
figure 3.3 will compile a test program called “mySimCode.C” using the same Trilinos and
Xyce headers that were installed for building Xyce itself. This example assumes no ad-
ditional “-I” directories are needed to find header files directly referenced in the “.C” file,
and assumes the C++ compiler’s name on the system is “c++”.

libtool --tag=CXX --mode=compile c++ \
-I$prefix/include -O3 -I$archdir/include/ \
-c mySimCode.C -o mySimCode.o

Figure 3.3. Compiling a test code with libtool
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Figure 3.4 shows an example of how libtool may be invoked to link this example program
against the same libraries against which Xyce itself was linked, making use of the “.la”
files that were installed by Xyce’s “make install” operation. This example is appropri-
ate for an open source build of Xyce, which includes only the three libraries “libxyce.la”,
“libADMS.la”, and “libNeuronModels.la”. Additional libraries are required for a full inter-
nal Sandia build of Xyce, and are easily identified simply by looking at the contents of
the $prefix/lib directory. Because we are using the “.la” files that libtool produced during
the build of Xyce, all of the additional libraries and linker options (notably any “-L” flags)
needed are automatically included by this command line because those dependencies
are already encoded in the libxyce.la file.

libtool --tag=CXX --mode=link c++ \
-L$prefix/lib -o mySimCode mySimCode.lo \
$prefix/lib/libxyce.la $prefix/lib/libADMS.la \
$prefix/lib/libNeuronModels.la

Figure 3.4. Linking a test code with libtool

Compiling without libtool wrappers

If building an application code that uses its own build system, and which cannot make use
of libtool, one must invoke the C++ compiler and linker directly, and specify all dependent
libraries explicitly. We cannot provide specific guidance here for all such build systems.
However, the complete list of libraries and linker flags that must be linked in may be
found in the “dependency libs” variable in the “libxyce.la” file. Calling these for the sake of
example “$deplibs” (as if the entire contents of the “dependency libs” variable setting in
the “.la” file were copied into an environment variable), one may compile the application
code with the command line in figure 3.5, and link it with the command line in figure 3.6.

c++ \
-I$prefix/include -O3 -I$archdir/include/ \
-c mySimCode.C -o mySimCode.o

Figure 3.5. Compiling a test code without libtool
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c++ \
-L$prefix/lib -o mySimCode mySimCode.lo \
-lxyce -lADMS \
-lNeuronModels $deplibs

Figure 3.6. Linking a test code without libtool

3.6 Limitations
The design of the general coupling interface is flexible and general, but not applicable to
all manner of circuit coupling that might be envisioned.

Xyce calls the computeXyceVectors method of the interface classes for every Newton
iteration of every time step of a simulation. If coupling to a mesh-based solver, it would be
highly inefficient to perform a full mesh solve every time computeXyceVectors is called.
For such solvers, it is generally the case that Xyce is providing boundary conditions on
interface surfaces of the mesh, and this coupling mechanism would be best suited to such
problems that are linear in their response to these boundary conditions, or which can be
linearized over small time scales.

Xyce performs its own adaptive time stepping to solve the circuit problem in transient.
Even when using the simulateUntil method to limit how much simulation time Xyce
is permitted to advance, Xyce may take many small timesteps under its own control,
making multiple calls back to the external code through the Vector Compute Interface
objects. The application code must therefore pay attention to the value of time passed to
it through the computeXyceVectors call. Xyce may also reject some of its own timesteps
based on its computation of local truncation error; when it does so it will attempt a new
solution at an earlier time than the one it rejected. The application code must therefore be
prepared to recompute quantities when the current simulation time passed to it through
computeXyceVectors has jumped backward.

If carefully written, it would be possible to couple a Xyce circuit to a full mesh solver that
recomputes the entire mesh solution on every call to computeXyceVectors, and the results
would be physically correct and consistent. This would be highly inefficient, however, and
such simulation needs would likely be better served with a different coupling mechanism.

Coupling of Xyce to frequency domain simulation codes is limited to harmonic balance
analysis at this time; Xyce’s AC analysis does not yet support direct frequency domain
loads, and still depends only on the time-domain load functions. Furthermore, while
Xyce’s harmonic balance analysis can work with Xyce’s own nonlinear circuit devices,
it does so by evaluating those devices in time domain at a series of time sample points
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and transforming the vectors they produce to obtain the frequency domain response. As
of this writing, the harmonic balance analysis is able to work with devices that can pro-
vide direct frequency domain loading, but it does so by assuming these devices are linear
functions of the solution variables in the frequency domain. As a consequence, Xyce only
calls the computeXyceFDVectors method of the interface class once per frequency, and
only uses the d~F

dX
matrix and ~B vectors that it computes. It is not yet possible to couple to

a truly nonlinear frequency domain model.

Xyce’s robust and adaptive time integrator makes it attractive for more general purpose
DAE time integration, e.g., by augmenting the internal variables and equations. However,
it should be noted that it is not currently possible to specify non-zero initial conditions
for the extra variables. It may be possible to work around this limitation using a variable
transformation, and this limitation may be addressed in future versions of Xyce1.

While it is not possible for external codes to give their internal nodes initial conditions, it
would be possible to impose initial conditions on these nodes through the Xyce netlist
using the .IC directive. Each internal node is known to Xyce by a name that consists of
the YGENEXT device’s name followed by the text “ internalnode ” followed by the index
of the internal node (with zero being the first internal node). So, for example, if the netlist
defines a device

YGENEXT RLC1 1 2

and this device is associated with an RLC vector compute interface as in figure 5.4 with
two internal variables, one could set the initial condition on the first internal variable (the
node between the inductor and capacitor) to 1.0 with:

.IC V(YGENEXT!RLC1 internalnode 0)=1.0

Note that unless the UIC or NOOP keyword is used on the .TRAN line, Xyce will attempt to
solve for the DC steady state (operating point) using these initial conditions. If the initial
condition is one that is inconsistent with a steady state there will be a simulation failure.
UIC or NOOP causes the transient simulation to skip the operating point computation and
proceed directly to transient simulation using the initial condition given (all zeros except
where specified otherwise by .IC lines.

1The limitation that devices may not simply impose their own initial conditions is a consequence of the
way that Xyce solves the nonlinear system for a solution update. It is possible to write device models
so that they can do so, but this requires a mechanism known as “voltage limiting” as described in the
Xyce mathematical formulation document [3]. The general external device code does not yet support this
mechanism, and would have to be extended to include it in order to address this limitation. Use of this
mechanism would then also require additional code to be implemented by the coupled application.
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4. API Reference

This chapter contains detailed documentation for the simulator interface API and for each
class and each method that can or must be implemented by an external simulator in order
to make use of the general coupling mechanism.

4.1 General Coupling Simulator Class

Coupling to Xyce via the technique described in this paper requires that the external simu-
lator instantiate an object of the type Xyce::Circuit::GenCouplingSimulator, which provides
all the methods required to set up and run circuit simulations.

In order to instantiate this object, one must include the files “Xyce config.h” and
“N CIR GenCouplingSimulator.h” from the Xyce installation, and link the application code
with Xyce libraries. The header files and libraries required are installed in the “include”
and “lib” directories by the “make install” target when building Xyce from source.

This section contains detailed documentation of the methods of the GenCouplingSimula-
tor class.

4.1.1 Constructor

Xyce::Circuit::GenCouplingSimulator(Xyce::Parallel::Machine comm=MPI COMM NULL)

The single optional argument to this constructor is the parallel communicator that should
be used when running under MPI. If not specified, the Xyce code will run in serial. An
example of instantiation of this object with default behavior is shown in figure 4.1.
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#include <Xyce config.h>

#include <N CIR GenCouplingSimulator.h>

[...]

// This creates a variable ‘‘xyce’’ of the

// coupling simulator class.

Xyce::Circuit::GenCouplingSimulator xyce;

[...]

Figure 4.1. Instantiating Simulation Object

4.1.2 Initialization methods
After construction, the GenCouplingSimulator object must be initialized before a circuit
simulation can proceed. The initialization is divided into early and late stages, between
which one may run the query and setup methods to modify the behavior of general exter-
nal devices present in the circuit netlist.

initializeEarly

Xyce::Circuit::Simulator::RunStatus initializeEarly(int argc, char **argv)

The initializeEarly method’s two arguments mimic the function of the same arguments in
a normal C or C++ main function: they are interpreted as representing the command line
that invoked Xyce. argc is the number of strings present in the array of strings, argv.

The string argv[0] is taken to be the name of the program, and no use is made of it.
Subsequent elements of the argv array are command line options as documented in
chapter 3 of the Xyce Reference Guide[5]. The final argument string in this array should
be the name of the netlist to be processed.

The initializeEarly method sets options as specified in argv and reads the given
netlist. It will instantiate the devices present in the netlist, allocate all of the solvers and
packages needed, and then stop processing, returning control to the caller. This allows
external codes to then set internal properties of general external devices, such as assign-
ing a vector compute object to them or setting their numbers of internal solution variables.
Only after the external code has completed those setup calls are the final initialization
steps performed by calling initializeLate.

The method returns a value from the Xyce::Circuit::Simulator::RunStatus enum, which
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has the values “Xyce::Circuit::Simulator::ERROR”, “Xyce::Circuit::Simulator::SUCCESS”,
or “Xyce::Circuit::Simulator::DONE”.

“ERROR” signifies failure of the initialization, and the actual error condition will have been
printed to Xyce’s standard error stream. Further calls to the GenCouplingSimulator ob-
ject’s methods should not be made, as Xyce has effectively terminated with a fatal error
when this value is returned.

“DONE” signifies that all processing is complete. This return value is used when the
command line arguments include an argument that prevents Xyce from proceeding to full
simulation, such as “-syntax”, “-count”, “-v”, “-norun” and so forth. If initializeEarly
returns this value, Xyce has effectively exited successfully and further calls such as
initializeLate should not be performed.

“SUCCESS” signifies that the initialization was successful, and the GenCouplingSimulator
object is ready for futher calls.

initalizeLate

Xyce::Circuit::Simulator::RunStatus initializeLate()

initializeLate is called after all query and setup methods are completed. It finalizes the
analysis of topology, sets up the internal vector and matrix storage, initializes the output
manager, and makes the object ready for simulation to take place. It returns the same run
status values as initializeEarly, which have the same meaning.

An example of calling the initialize methods is found in figure 4.2

40



#include <Xyce config.h>

#include <N CIR GenCouplingSimulator.h>

Xyce::Circuit::Simulator::RunStatus run status;

Xyce::Circuit::GenCouplingSimulator xyce;

char * argv[2];

char progName[]="xyce";

char netlist[]="mynetlist.cir";

argv[0]=progName;

argv[1]=netlist;

// perform early initialization

run status = xyce.initializeEarly(2,argv);

if (run status==Xyce::Circuit::Simulator::ERROR) exit(1);

if (run status==Xyce::Circuit::Simulator::DONE) exit(0);

// do more setup

[...]

// and finish initialization

run status = xyce.initializeLate();

if (run status==Xyce::Circuit::Simulator::ERROR) exit(1);

if (run status==Xyce::Circuit::Simulator::DONE) exit(0);

[...]

Figure 4.2. Initializing Simulation Object

4.1.3 Query and setup methods

In between calling initializeEarly and initializeLate, one can call methods of the
GenCouplingSimulator class that can influence the behavior of devices.

Recall that the devices used to couple external simulators are all of the “General External
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Device” type, and so they will all appear in netlists with the word “YGENEXT” at the
beginning of lines. The GenCouplingSimulator object has methods that allow the external
code to query whether any such devices exist in the netlist and what their full names are,
and then to manipulate these individually.

getDeviceNames

bool getDeviceNames(const std::string & modelGroupName,

std::vector<std::string> & deviceNames)

getDeviceNames takes a string containing a “model group” name, and returns a list of
names for all devices in the netlist of that type. It is a general purpose method that can
be given any valid model group name (“M” for MOSFETs, “Q” for BJTs, etc.) but for the
purposes of this application note, we will only need to call it with “YGENEXT” as the model
group name.

The method will return true if any devices of the given type are located, and their names
will be in the returned STL string vector deviceNames. The method will return false if no
such devices are found.

Devices of the “YGENEXT” type will all have names returned by this function that are the
concatenation of the string “YGENEXT” and the next token on the netlist line, separated
by an exclamation point (“!”). For the netlist line

YGENEXT MYDEVICE1 2 0

the array returned by getDeviceNames("YGENEXT",[...]) would contain
“YGENEXT!MYDEVICE1”.

Names returned by getDeviceNames may be used as the device name in all of the query
and setup functions below.
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#include <Xyce config.h>

#include <N CIR GenCouplingSimulator.h>

[...]

// xyce object already declared as in 4.2

run status = xyce.initializeEarly(argc,argv);

bool bsuccess;

std::vector<std::string> deviceNames;

bsuccess = xyce.getDeviceNames("YGENEXT", deviceNames);

if (bsuccess)

{
// there are some, do something with them

[...]

}
else

{
// otherwise, there is nothing in this netlist

// to connect to... handle appropriately,

// maybe that means to abort here.

[...]

}

run status = xyce.initializeLate();

[...]

Figure 4.3. Querying device by type

Parameter access methods

Most device types in Xyce allow the user to specify parameters that control their function
from the netlist line. The general external device is no exception. General external devices
can have any number of double-precision, integer, boolean, or string parameters specified
on their instance lines in the netlist, and the external simulator that is implementing the
internals of these devices can query Xyce to obtain their values.

An example netlist snippet containing a “YGENEXT” device with parameters appears in
figure 4.4. Double precision parameters are passed in the “DPARAMS” “vector composite”
parameter, integers in “IPARAMS”, strings in “SPARAMS” and booleans in “BPARAMS”.
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Each composite contains a “NAME” and a “VALUE” variable, and each of these variables
contains a comma-separated list of elements as values. Each desired parameter must be
given a name in the NAME variable and a value in the VALUE variable in the correspond-
ing position.

The names and values of parameters given in the netlist are given no significance in Xyce
— they are made available to the calling application code for its use via the getDParams,
getSParams, getIParams, and getBParams methods.

The Xyce netlist parser puts strict limits on what can be used as string values in the
“SPARAMS” composite. These strings cannot contain any sort of parentheses, brackets,
or braces, and cannot contain commas or spaces. There is (as of version 6.9) currently
no capability in Xyce to use quotation marks to escape the contents of the strings, as both
single and double quotation marks are reserved for other purposes. This may change in
a future version of Xyce.

*

* [...]

YGenExt rlc1 1a 0

+ DPARAMS={NAME=R,L,C VALUE=1K,1m,1p}
+ IPARAMS={NAME=num1,num2,num3 VALUE=1,2,3}
+ SPARAMS={NAME=string1,string2 VALUE=value1,value2}
+ BPARAMS={NAME=bool1,bool2 VALUE=true,false}

* [...] other elements follow [...]

Figure 4.4. Specifying Parameters to YGENEXT
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#include <Xyce config.h>

#include <N CIR GenCouplingSimulator.h>

[...]

// xyce object already declared as in 4.2

run status = xyce.initializeEarly(argc,argv);

bool bsuccess;

std::vector<std::string> deviceNames;

bsuccess = xyce.getDeviceNames("YGENEXT", deviceNames);

if (bsuccess)

{
// there are some, do something with them

[...]

// Get any netlist parameters specified for the devices

for ( int i=0; i<deviceNames.size(); i++)

{
std::vector<std::string> doubleParamNames;

std::vector<double> doubleParamValues;

bsuccess = getDParams(deviceNames[i],

doubleParamNames,

doubleParamValues);

// if bsuccess false, this should be fatal

// otherwise, process names and values as needed

std::vector<std::string> intParamNames;

std::vector<int> intParamValues;

bsuccess = getIParams(deviceNames[i],

intParamNames,

intParamValues);

// if bsuccess false, this should be fatal

// otherwise, process names and values as needed

Figure 4.5. Querying device parameters
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std::vector<std::string> boolParamNames;

std::vector<bool> boolParamValues;

bsuccess = getBParams(deviceNames[i],

boolParamNames,

boolParamValues);

// if bsuccess false, this should be fatal

// otherwise, process names and values as needed

std::vector<std::string> stringParamNames;

std::vector<std::string> stringParamValues;

bsuccess = getSParams(deviceNames[i],

stringParamNames,

stringParamValues);

// if bsuccess false, this should be fatal

// otherwise, process names and values as needed

}
[...]

}
else

{
// otherwise, there is nothing in this netlist

// to connect to... handle appropriately,

// maybe that means to abort here.

[...]

}

run status = xyce.initializeLate();

[...]

Figure 4.6. Querying device parameters (continued)

getDParams

bool getDParams(const std::string & deviceName,

std::vector<std::string> &pNames,

std::vector<double> & pValues);

Given a device name (as returned by getDeviceNames), populate the pNames and pValues

vectors with the names and values of parameters given in the DPARAMS composite.
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As an example, if this function were called while processing the netlist of figure 4.4 as
in figure 4.5, the names vector would be filled with the strings “R”, “L”, and “C”, and the
values vector would have 1000, 0.001, and 1e-12.

The function returns “true” unless the device named cannot be found. The vectors will be
empty if the device is found but no double-type parameters have been found on the netlist
line.

getIParams

bool getIParams(const std::string & deviceName,

std::vector<std::string> &pNames,

std::vector<int> & pValues);

Given a device name (as returned by getDeviceNames), populate the pNames and pValues

vectors with the names and values of parameters given in the IPARAMS composite.

As an example, if this function were called while processing the netlist of figure 4.4 as in
figure 4.5, the names vector would be filled with the strings “num1”, “num2”, and “num3”,
and the values vector would have 1, 2, and 3.

The function returns “true” unless the device named cannot be found. The vectors will be
empty if the device is found but no int-type parameters have been found on the netlist line.

getBParams

bool getBParams(const std::string & deviceName,

std::vector<std::string> &pNames,

std::vector<bool> & pValues);

Given a device name (as returned by getDeviceNames), populate the pNames and pValues

vectors with the names and values of parameters given in the BPARAMS composite.

As an example, if this function were called while processing the netlist of figure 4.4 as in
figure 4.5, the names vector would be filled with the strings “bool1, “bool2”, and the values
vector would have true and false.

The function returns “true” unless the device named cannot be found. The vectors will
be empty if the device is found but no boolean-type parameters have been found on the
netlist line.

getSParams

bool getSParams(const std::string & deviceName,
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std::vector<std::string> &pNames,

std::vector<std::string> & pValues);

Given a device name (as returned by getDeviceNames), populate the pNames and pValues

vectors with the names and values of parameters given in the SPARAMS composite.

As an example, if this function were called while processing the netlist of figure 4.4 as in
figure 4.5, the names vector would be filled with the strings “string1” and “string2”, and
the values vector would have “value1” and “value2”.

The function returns “true” unless the device named cannot be found. The vectors will be
empty if the device is found but no string-type parameters have been found on the netlist
line.

setVectorLoader

bool setVectorLoader(const std::string & deviceName,

Xyce::Device::VectorComputeInterface * vciPtr);

Every “YGENEXT” device in the circuit must have a vector loader associated with it. Appli-
cation codes define classes that inherit from the Xyce::Device::VectorComputeInterface,
and then implement the methods of that class for Xyce to call as needed.

The setVectorLoader function associates a pointer to a VectorComputeInterface object
(defined and instantiated by the external application) with the “YGENEXT” device asso-
cated with the name deviceName (as returned by getDeviceNames). The methods of this
object will be called every time that Xyce needs the device to compute its DAE vector and
matrix contributions.

Xyce stores the pointer provided in the device object associated with the named device,
and calls the class’ methods through that pointer. It is essential that the vector compute
interface object not be deleted until Xyce processing is complete.

This method should only be called in between early and late initialization. Attempting to
change the vector loader associated with a device during the course of a run may lead to
undefined and unpredictable behaviors.

This function always returns true unless the named device cannot be found. A false return
value indicates an error condition that must be handled by the application code.

An example of using this method is shown in context in figure 4.7. Note that in this
example we have taken care to declare the vector compute object so that it remains in
scope and is not deleted while Xyce is active.
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#include <Xyce config.h>

#include <N CIR GenCouplingSimulator.h>

[...]

// define the resistorVectorCompute class as shown

// in figure 5.1

[...]

// instantiate simulator object as in figure 4.2

[...]

run status = xyce.initializeEarly(argc,argv);

bool bsuccess;

std::vector<std::string> deviceNames;

bsuccess = xyce.getDeviceNames("YGENEXT", deviceNames);

// Intentionally declared outside of if block

// so it will not be deleted while pointer is stored!

resistorVectorCompute rvc(1.0);

if (bsuccess)

{
// there are YGENEXTs, do something with them

// For the purposes of this example, just connect first device

// to a resistor object as shown in figure 5.1,

rvc.setResistance(1000.0);

bsuccess = xyce.setVectorLoader(deviceNames[0],&rvc);

[...]

// perform other set-up

[...]

}
else

{
// otherwise, there are no YGENEXTs in this netlist

[...]

}

run status = xyce.initializeLate();

[...]

// perform simulations

[...]

Figure 4.7. Setting a vector loader
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setNumInternalVars

bool setNumInternalVars(const std::string & deviceName,const int numInt);

By default, general external (“YGENEXT”) devices have no internal variables, and only as
many external variables as have been specified as nodes on the netlist line.

If the formulation of the external device model requires additional solution variables that
Xyce needs to solve for, Xyce must allocate additional space in the vectors and matrices it
uses during solution, and the device must load additional elements of the DAE vectors and
matrices. The application code must therefore specify to Xyce how many extra variables
should be associated with each device.

The setNumInternalVars function allows an external code to indicate that a named device
has a specified number of additional internal variables. The deviceName argument is the
name of the device as returned by getDeviceNames.

If this function is never called for a device, then the device will be taken to have no internal
variables.

Since the number of internal variables must be known by the time of late initialization (at
which time various vectors are allocated and circuit topology finalized), if setNumInternalVars
is called at all for any given device, it MUST be called in between the initializeEarly

and initializeLate calls.

getNumVars

int getNumVars(const std::string & deviceName);

The getNumVars returns the total number of solution variables (both external and internal)
associated with the named device.

getNumExtVars

int getNumExtVars(const std::string & deviceName);

The getNumExtVars returns the total number of external nodes (i.e., those listed explicitly
on the netlist line) associated with the named device.

getSolution

bool getSolution(const std::string & deviceName, std::vector<double> & sV);
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Causes Xyce to fill the sV vector with the values of all solution variables associated with
the named device. If passed an empty vector for sV, the method resizes the vector to have
the length equal to the total of external and internal variables for the device, but otherwise
assumes the vector is already the correct length (the length that would be returned by
getNumVars). External variables are the first in the vector, followed by internal variables.

This method is primarily used after simulateUntil has returned, to get the most recent
converged solution after completion of a partial transient run.

setJacStamp

bool setJacStamp(const std::string & deviceName,

std::vector< std::vector<int> > &jS);

Xyce uses a sparse matrix representation to store the Jacobian matrices of the problem.
Each device is responsible for providing an accessor method that returns a data structure
known as a “Jacobian Stamp” to notify the topology packge of which non-zero elements
of the Jacobian the device needs to load.

By default, the general external device informs the topology package that it has a dense
Jacobian stamp — every equation of the model depends on all variables of the model. If
this is not true and this behavior is not overriden, the device will be responsible for loading
the full Jacobian even if many elements are actually zero.

Vector compute interfaces actually return a full, square Jacobian in a separate data struc-
ture, and need to load zeros in the appropriate locations if needed, so this default will
always work. However, for large problems where the pattern of non-zero elements in the
Jacobian is very sparse, it can be inefficient for Xyce to allocate Jacobian elements that
will always be zero anyway.

The setJacStamp method exists to allow the developer to override the default and provide
the correct pattern of non-zero elements. Its first argument is the name (as returned by
getDeviceNames) of the device for which the Jacobian stamp is being defined, and the
second argument is the Jacobian stamp to use.

The Jacobian stamp is an array ( STL vector of STL vectors) of integers identifying the
nonzero elements of the matrix. The first index of the array is the row of the Jacobian,
and the row has size equal to the number of non-zero elements of the matrix for that row.
The values of the elements of the row vector are the indices of the variables in the row for
which there are non-zero entries in the matrix. The Jacobian stamp need not be square.

For example, consider a device with three variables, whose Jacobian matrix happens to
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have the pattern of entries:  xx 0 xz
yx yy 0
0 zy zz

 .

such that the device will always have zeros where indicated. This device could benefit
from specifying the Jacobian stamp instead of relying on the default implementation.

Using the normal C++ 0-based indexing scheme, The first row (row 0) depends only on
variables 0 and 2, the second (row 1) only on 0 and 1, and the third (row 2) only on 1 and
2. The Jacobian stamp would therefore be set as:

std::vector< std::vector<int> > jacStamp

jacStamp[0].resize(2)

jacStamp[0][0] = 0;

jacStamp[0][1] = 2;

jacStamp[1].resize(2)

jacStamp[1][0] = 0;

jacStamp[1][1] = 1;

jacStamp[2].resize(2)

jacStamp[2][0] = 1;

jacStamp[2][1] = 2;

If a non-default Jacobian stamp is needed for a device, setJacStamp must be called
prior to calling setVectorLoader for that device. If the jacobian stamp is not set when
setVectorLoader is called, then setVectorLoader will create a dense jacobian stamp for
the device itself.

addOutputInterface

bool addOutputInterface(Xyce::IO::ExternalOutputInterface * extIntPtr);

Add an external output interface object pointed to by extIntPtr to the list of external
output objects.

There can be multiple outputters defined simultaneously. Each .PRINT line in a netlist cre-
ates an outputter that formats data and writes it to a file in a manner dictated by options on
the print line. Similarly, the output manager will create a new outputter for each interface
object added by addOutputInterface, add it to the list of known outputters, and associate
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the interface object with that outputter. The methods of the interface object determine
how the data is processed.

Each analysis type within Xyce causes all outputters appropriate to that analysis to be-
come active. The type of analysis that applies to an external output interface is determined
by calling the getOutputType method of the interface object.

An example of using this method to make use of a user-defined output interface is found
in figure 4.8. An example of defining a suitable output interface class is found above in
figure 3.2.

Xyce stores the pointer provided for the duration of the run, and calls the class’ methods
through that pointer. It is essential that the output interface object not be deleted until
Xyce processing is complete. Note that the example in figure 4.8 takes care to declare
the object so that it is not possible for it to go out of scope and be deleted while running
Xyce simulations.
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#include <Xyce config.h>

#include <N CIR GenCouplingSimulator.h>

#include <N IO ExtOutInterface.h>

// define a new derived outputter class

class ioExampleInterface

: public Xyce::IO::ExternalOutputInterface

{
// see figure 3.2

[...]

};
// instantiate simulator object as in figure 4.2

[...]

run status = xyce.initializeEarly(argc,argv);

// Instantiate the outputter

ioExampleInterface * myIOInterface;

myIOInterface = new ioExampleInterface();

// and tell Xyce to use it

xyce.addOutputInterface(myIOInterface);

// perform additional set-up

[...]

run status = xyce.initializeLate();

[...]

// run simulations

[...]

Figure 4.8. Adding an external outputter

4.1.4 Execution functions

runSimulation

Xyce::Circuit::Simulator::RunStatus runSimulation();

Causes Xyce to take control and run the entire simulation specified in the netlist to com-
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pletion. All general external devices will call back to the external simulator via their vector
compute interfaces, but otherwise the entire simulation is controlled by Xyce’s time step-
ping (or other analysis) algorithm.

The method returns a value from the Xyce::Circuit::Simulator::RunStatus enum, which
has the values “Xyce::Circuit::Simulator::ERROR”, “Xyce::Circuit::Simulator::SUCCESS”,
or “Xyce::Circuit::Simulator::DONE” as described in the initializeEarly section.

This function must be called AFTER the call to initializeLate.

simulateUntil

bool simulateUntil(double requestedUntilTime,

double& completedUntilTime);

simulateUntil causes Xyce to perform a limited transient simulation not to exceed the
simulation time specified in requestedUntilTime. Upon return, completedUntilTime will
contain the actual time that Xyce reached, which will be less than or equal to requestedUntilTime

— either because the netlist specified a final time earlier than requestedUntilTime, or be-
cause there was a fatal convergence error.

Each call to simulateUntil after the first resumes the current simulation from where the
last call left off.

The method returns true if the simulation completed successfully, either by reaching
requestedUntilTime or the final time specified in the netlist, whichever is earlier. It returns
false if the run was unsuccessful.

If simulateUntil returns true and completedUntilTime is less than requestedUntilTime,
Xyce has completed its work and further calls to simulateUntil will do nothing.

This function must be called AFTER the call to initializeLate.

finalize

Xyce::Circuit::SimulatorRunStatus finalize();

This method causes Xyce to close all output files after a run is complete and emit timing
information. It should be called after the Xyce simulation is complete, either by returning
from runSimulation or by reaching the final netlist time after repeated simulateUntil

calls.
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4.2 Vector Compute Interface Class
Each “YGENEXT” device in the circuit must have associated with it an object that derives
from the Xyce::Device::VectorComputeInterface class, as defined in the file
“N DEV VectorComputeInterface.h”. This object has two primary methods, at least one of
which must be implemented by the user. Xyce will call these methods every time it loads
the DAE vectors and matrices for the circuit, and the information they return will be used
to load the DAE elements for the associated device.

The Xyce::Device::VectorComputeInterface class is an abstract interface class, mean-
ing it cannot be instantiated directly. The user must define a new class that inherits from
this interface, and then implement the required methods. A trivial example of such a
derived class implementing a simple linear resistor is shown in figure 5.1.

Once allocated and initialized, a pointer to the interface object is associated with a “YGENEXT”
device using the setVectorLoader method of the GenCouplingSimulator class described
in section 4.1.

4.2.1 computeXyceVectors
virtual bool computeXyceVectors(std::vector<double> & solutionVars,

double time,

std::vector<double>&F,

std::vector<double>&Q,

std::vector<double>&B,

std::vector<std::vector<double> > &dFdx,

std::vector<std::vector<double> > &dQdx) = 0;

This pure virtual function must be implemented by every class derived from the interface.
It is called for all time domain analyses, and also for all frequency domain analyses if the
class does not also implement frequency domain loads.

A vector of doubles is passed as solutionVars, and contains all of the solution vari-
ables associated with the General External device to which this interface is tied (by a
setVectorLoader call). The first entries of the solutionVars array are the external nodes
in the order listed on the netlist “YGENEXT” line, and subsequent entries are the internal
variables, if any were allocated by a setNumInternalVars call.

The single double precision value time is the current time value being solved for by Xyce.
For DC and AC simulations this value will always be zero. In transient simulation, it will be
the value of the time point currently being attempted.

Recall that for each time step Xyce is performing a Newton solve to find the solution,
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so this method may be called more than once with the same time value. Further, during
transient simulation Xyce uses an adaptive timestepping algorithm, where the time step is
adjusted to maintain an acceptable local truncation error; it is therefore often the case that
Xyce will attempt a time step, conclude that the local truncation error is too large, and then
reject that step. When this happens, it will then attempt to take a smaller time step — the
value of time will then be earlier than the previous call. Therefore, it cannot be assumed
that time will be monotonically increasing, and it is the responsibility of the coupled code
to take this value of time into account when evaluating the DAE contributions.

In Harmonic Balance (HB) simulation, Xyce will do time-domain loads at specific time
values for all devices that do not provide frequency domain loads, and will then perform
Fourier transforms to obtain the HB DAEs. Devices that do provide frequency domain
loads will be loaded separately and their contributions added to the Fourier transformed
time-domain vectors.

The remaining arguments of computeXyceVectors are STL vectors into which the object
should load this device’s contributions to ~F , ~Q, and ~B and their derivatives with respect to
the slution variables. The length of these vectors is set by the method itself, and should
be either length zero (to signify that this device loads nothing into that vector) or the
same length as the solutionVars vector. Similarly, the matrix size must either be zero (to
signify no load) or square with each dimension being the same length as solutionVars.
When the “YGENEXT” device loads matrix elements from the arrays returned by a compu-
teXyceVectors call, it only accesses the elements of these STL matrices that are flagged
as non-zeros by the device’s Jacobian stamp. As noted in section 4.1.3, the default Ja-
cobian stamp is fully dense (and so all elements of the STL matrices are copied out and
loaded into the full system Jacobians), but may be overridden by the application to take
advantage of known sparsity patterns by using a call to setJacStamp.

When loading the derivatives into the dFdX and dQdX matrices, the row index is the equa-
tion index, and the column index is the variable index — thus, dFdX[row][col] will be the
derivative of F[row] with respect to variable col.

computeXyceVectors must return true unless there is a fatal error condition, in which case
it should return false.

The example of figure 5.1 demonstrates how a simple linear resistor would implement
computeXyceVectors.

4.2.2 computeXyceFDVectors

virtual bool computeXyceFDVectors(

std::vector<std::complex<double> > & solutionVars,

double frequency,

std::vector<std::complex<double> >&F,
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std::vector<std::complex<double> >&B,

std::vector<std::vector<std::complex<double> > > &dFdx);

The computeXyceFDVectors method is called during Harmonic Balance (HB) analysis to
perform frequency-domain loads instead of time-domain loads.

For most devices Xyce’s HB analysis uses normal time-domain loads, calling their load
functions at designated time points to create a full period of information at the desired
sampling interval, and then performing Fourier transforms to obtain the needed HB DAE
vectors. For devices that have no internal time-dependent state, this works well and
simplifies implementation of devices.

Some devices such as the transmission line devices maintain internal state during tran-
sient runs that assumes that the simulation is integrating forward in time and makes this
method of HB loading invalid. Such devices have to load their frequency domain vectors
directly.

Similarly, if coupling to a frequency domain code with no transient analysis, it would be
necessary that the general external device load the frequency domain DAE vectors di-
rectly, since transient information isn’t available from the external simulator.

computeXyceFDVectors is used by the general external device to perform frequency do-
main loads exactly in the same manner as computeXyceVectors is used in transient — it
is called for each required frequency with a vector of solution variables at that frequency,
and must return the ~F and ~B vectors and the derivative of ~F with respect to the solution
variables.

computeXyceFDVectors is only called by the general external device if haveFDLoads re-
turns true. Otherwise the HB loader uses the normal transient loads and Fourier trans-
forms.

computeXyceFDVectors must return true unless there is a fatal error condition, in which
case it should return false.

Because it has a default implementation that simply returns “true” and does nothing else,
computeXyceFDVectors need not be reimplemented by user code unless it is necessary
to load frequency domain vectors directly (as would be the case for coupling to frequency
domain codes). If reimplemented to do loads, haveFDLoads must also be reimplemented
to return true. An example of a vector loader class that implements frequency domain
loads is shown in figures 5.2 and 5.3.

Note: If coupling to a purely frequency domain simulator for which it makes no sense
to run Xyce in transient, it is still necessary to reimplement the pure-virtual time-domain
computeXyceVectors function. Since it would be an error to run such a coupled simulation
in transient, the computeXyceVectors function should simply return false — this will cause
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any attempt to perform Xyce using anything but HB simulation to exit with an error.

4.2.3 haveFDLoads
virtual bool haveFDLoads();

Xyce’s HB loader will use time-domain loads and perform Fourier transforms to obtain the
harmonic balance DAEs unless a device implements frequency domain loads directly.

haveFDLoads is used by the general external device and the HB loader to determine
whether a general external device supports frequency domain loads. If this function re-
turns false (as its default implementation does), then no calls are made to computeXyceFDVectors,
and instead only time domain loads (calling computeXyceVectors) are performed.

If computeXyceFDVectors is reimplemented to perform frequency domain loads, haveFDLoads
should be reimplemented to return true.

4.3 External Output Interface Class
External applications may create output interfaces to cause Xyce to transmit solution
results in the same manner as those resulting from the presence of .PRINT lines in the
netlist. This is done by creating objects that derive from the Xyce::IO::ExternalOutputInterface

class as defined in the file “N IO ExtOutInterface.h”. Once allocated and initialized, a
pointer to these objects must be registered with Xyce via the addOutputInterface method
of the GenCouplingSimulator class (see section 4.1).

The methods of this class are broken down into three sets: query, reporting, and output.
Query methods are called by Xyce during setup of its output manager, and should be
implemented to inform Xyce of the nature of the output interface, such as the analysis
with which it should be associated and the list of output quantities that should be delivered
to it. Reporting methods are used by Xyce after initial processing to report parsing status
and to inform the external application of the actual names of output quantities it will be
receiving. Output methods are called repeatedly through a run to deliver the values of the
requested quantities.

4.3.1 Query Methods

getOutputType

virtual OutputType::OutputType getOutputType();
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This method is used to determine which analysis should cause the outputter to be invoked.
It is similar to the second field of a .PRINT as described in the Xyce Reference Guide [5].
The outputter associated with the interface object will not be invoked unless the current
analysis type matches the value returned by this method.

The allowed return values are those of the OutputType enum in the file “N IO OutputTypes.h”
that is automatically included by the “N IO ExtOutInterface.h” header. The external out-
putter has not yet been coded to support all of the output types listed in this enum. The
supported return values are given below, along with the analysis that applies.

� Xyce::IO::OutputType::TRAN – .TRAN analysis

� Xyce::IO::OutputType::DC – .DC analysis

� Xyce::IO::OutputType::AC – .AC analysis primary output

� Xyce::IO::OutputType::AC IC – .AC analysis, initial condition output (usually only
needed for debugging of Xyce AC analysis).

� Xyce::IO::OutputType::HB FD – .HB analysis, frequency domain output

� Xyce::IO::OutputType::HB TD – .HB analysis, time domain output

� Xyce::IO::OutputType::HB IC – .HB analysis, initial condition output (time domain)

� Xyce::IO::OutputType::HB STARTUP – .HB analysis, startup transient output (time
domain)

The default implementation of this method returns Xyce::IO::OutputType::TRAN.

getName

virtual std::string getName();

Returns a string that is used by Xyce in error reports concerning set up of the outputter.
The default implementation returns the name “ExternalOutput”. One need only reimple-
ment this method if creating multiple interfaces, so that any error messages generated
by Xyce can be easily associated with the code that caused them. These errors would
typically concern Xyce being unable to parse the requested output fields it gets from the
object’s requestedOutputs query.
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requestedOutputs

virtual void requestedOutputs(std::vector<std::string> & outputVars);

This method is called once by Xyce while it is constructing an outputter to determine what
output quantities it should deliver to the external application. It corresponds to the output
list on a .PRINT line.

The application should fill the vector with the names of requested output quantities, one
quantity per element of the vector. Any name that is legal on a .PRINT line may be used,
including the wildcards V(*) or I(*) and expressions delimited by curly braces (“{” and
“}”).

If an output interface is intended to be used in transient or frequency domain simulation
(as opposed to DC steady state), it is advisable to include the independent variable “TIME”
or “FREQUENCY” in the list of requested outputs. If this is omitted, Xyce will prepend the
appropriate variable to the list. No independent variable is prepended for DC simulation,
or if the appropriate variable already appears anywhere in the requested list.

4.3.2 Reporting methods
As Xyce sets up an outputter, it will call these methods to report its progress back to the
external application.

reportParseStatus

virtual void reportParseStatus(std::vector<bool> & statusVec);

Xyce will call this method after processing the list of strings returned by requestedOutputs.
The vector of booleans will be of the same length as the vector obtained from calling
requestedOutputs, and an element will be “true” if Xyce was able to parse the string in
that vector position, and “false” if it was not parseable. The application should then be
responsible for reporting an error to the user or developer.

outputFieldNames

virtual void outputFieldNames(std::vector<std::string> & outputNames) = 0;

This pure virtual method must be implemented. There is no default implementation.

After the outputter is set up, Xyce will call this function to inform the external application of
the actual names of output quantities it will be receiving from Xyce, in the order that they
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will be delivered. This list may not be identical to the list provided by requestedOutputs,
because Xyce will have canonicalized the name (generally by upcasing the string), will
have ignored any unparseable fields, will have expanded any wild cards present in the
requested list, and may have prepended an independent variable. It is the responsibility
of the application code to map the strings returned in this function onto those requested.

Xyce will return canonicalized names in the same order as the non-canonical names were
provided by requestedOutputs, but when expanding wild cards the ordering of fields will
be platform dependent — node and current names are stored in an unordered map, and
the actual order in which names are emitted when a wild card is expanded depends on the
implementation of the STL unordered map container on the current platform. It is essential
therefore that the application not make assumptions about the ordering of expanded wild
card output lists and instead use the vector provided by outputFieldNames to get the
definitive list of output field names for values that will be provided by Xyce during a run.

This method is called by Xyce once per run, as if it were a request to output a header line
for an output file. It is up to the application to use this information as needed.

4.3.3 Output methods
Once analysis actually begins, Xyce sends data to be output to each active outputter
at designated intervals. For DC sweep simulations, the outputters are called for each
step of the sweep after the solution is converged. For transient simulations, by default
the solution is output for every time step computed by Xyce, but this can be overridden
to output at specified intervals with .OPTIONS OUTPUT directives. For AC analysis, the
solution is output for each computed frequency. For harmonic balance simulation the
entire solution in frequency domain is output to the HB FD outputters, and the Fourier
transform of the frequency-domain solution is output to the HB TD outputters.

If the netlist contains .STEP sweeps, all analyses are repeated for each step of the sweep,
as is all output. The outputters are notified when a new step of a sweep is started so they
may take special action if needed.

The external output interface class contains methods that will be called by the outputters
as the run proceeds to accomplish the actions that would simply result in file I/O for its in-
ternal outputter types. These methods should be implemented by the external application
to complete the delivery of this data.

outputReal

virtual void outputReal(std::vector<double> & outputData);

This method is called each time that time-domain data should be output (this includes
transient and DC analysis, but also time-domain (HB TD), initial condition (HB IC), or
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startup (HB STARTUP) output from harmonic balance analysis and initial condition output
for AC analysis (AC IC)). These analyses and auxilliary output types produce only real
quantities.

The outputData vector will be of the same length as the vector filled by the outputFieldNames

vector, and the data in each element is the current value of the output quantity named in
the names vector.

outputComplex

virtual void outputComplex(std::vector<std::complex<double> > & outputData);

This method is called each time that frequency-domain data should be output. These are
the AC and HB FD output types.

The outputData vector will be of the same length as the vector filled by the outputFieldNames

vector, and the data in each element is the current value of the output quantity named in
the names vector.

finishOutput

virtual void finishOutput();

This method is called by Xyce at the conclusion of a run as if it were a request to output a
file footer. It also informs the external application that no further data will be sent through
the interface for the current run.

The method has a default implementation that does nothing.

newStepOutput

virtual void newStepOutput(int stepNumber, int maxStep);

When a netlist contains a .STEP directive, Xyce will perform repeated runs of any analysis
statement in the netlist with the variable or parameter in the .STEP line varying each time.
This method is called each time a .STEP loop transitions to the next value. The total
number of steps that will be taken is passed in maxStep, and the current step number
passed as stepNumber. (Note: The first step is step 0.)

The default implementation does nothing.
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finishedStepping

virtual void finishedStepping();

This method is called when all steps of all .STEP directives in a netlist have been com-
pleted.
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5. Examples

This chapter collects various examples that have been referred to previously along with
a basic description for an approach to coupling a production-level finite element analysis
code. The first section includes the minimal implementation of a linear resistor, a linear
capacitor including frequency domain loads, and the two-terminal, serial RLC network.
The second section describes the steps and some details for how a production level finite-
element (FEM) code can be treated as a lumped element within the Xyce circuit using the
General External Device API.

5.1 Basic Examples

In addition to the simple implementations shown here, a fully functional demonstration
code that contains several implementations of vector compute interfaces (including sev-
eral that require one or more internal variables and/or sparse Jacobian stamps), a func-
tional external output interface, and a complete implementation of all code needed to
invoke Xyce and run netlists that contain certain YGENEXT devices may be found in
the Xyce source code tree in the src/test/GenExtTestHarnesses directory in the file
testGenCoup.C. This program may be built inside a Xyce build directory after configuring
and building Xyce itself by navigating into the src/test/GenExtTestHarnesses subdi-
rectory of the build directory (NOT the source directory) and running the command make

testGenCoup. This same program is invoked by the test cases found in the “GenCoupAPI”
directory of the Xyce test suite. The test cases in this directory run DC, AC, Transient,
and Harmonic balance simulations.
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#include <Xyce config.h>

#include <N DEV VectorComputeInterface.h>

class resistorVectorCompute

: public Xyce::Device::VectorComputeInterface

{
public:

resistorVectorCompute(double R) : R (R) {};

// Not part of the API:

void setResistance(double R) {R = R;};

virtual bool computeXyceVectors(std::vector<double> & sV,

double t,

std::vector<double> & F,

std::vector<double> & Q,

std::vector<double> & B,

std::vector<std::vector<double> > & dFdX,

std::vector<std::vector<double> > & dQdX)

{
F.resize(2);

Q.clear();

B.clear();

dQdX.clear();

dFdX.resize(2);

double voltageDrop=sV[0]-sV[1];

double conductance = 1.0/R ;

double current = voltageDrop*conductance;

F[0] = current;

F[1] = -current;

dFdX[0].resize(2);

dFdX[0][0] = conductance;

dFdX[0][1] = -conductance;

dFdX[1].resize(2);

dFdX[1][0] = -conductance;

dFdX[1][1] = conductance;

return true;

}
private:

double R ;

};

Figure 5.1. Simple linear resistor implementation
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#include <Xyce config.h>

#include <N DEV VectorComputeInterface.h>

class capacitorVectorCompute

: public Xyce::Device::VectorComputeInterface

{
public:

capacitorVectorCompute(double C) : C (C) {};

virtual bool computeXyceVectors(std::vector<double> & sV,

double t,

std::vector<double> & F,

std::vector<double> & Q,

std::vector<double> & B,

std::vector<std::vector<double> > & dFdX,

std::vector<std::vector<double> > & dQdX)

{
Q.resize(2);

F.clear();

B.clear();

dFdX.clear();

dQdX.resize(2);

for (int i=0; i<2; i++)

dQdX[i].resize(2);

double voltageDrop = (sV[0]-sV[1]);

Q[0] = voltageDrop*C ;

Q[1] = -Q[0];

dQdX[0][0] = C ;

dQdX[0][1] = -C ;

dQdX[1][0] = -C ;

dQdX[1][1] = C ;

return true;

}

Figure 5.2. Simple linear capacitor implementation (part 1)
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virtual bool computeXyceFDVectors(

std::vector<std::complex<double> > &sV,

double frequency,

std::vector<std::complex<double> > &F,

std::vector<std::complex<double> > &B,

std::vector<std::vector<std::complex<double> > > &dFdX)

{
B.clear();

F.resize(2);

dFdX.resize(numVars);

double pi = 3.14159265358979;

for ( int i=0; i<2; i++)

dFdX[i].resize(2);

dFdX[0][0] = std::complex<double> ( 0, frequency*2*pi*C );

dFdX[0][1] = -dFdX[0][0];

dFdX[1][0] = -dFdX[0][0];

dFdX[1][1] = dFdX[0][0];

F[0] = dFdX[0][0]*sV[0]+dFdX[0][1]*sV[1];

F[1] = dFdX[1][0]*sV[0]+dFdX[1][1]*sV[1];

return true;

};

virtual bool haveFDLoads() { return true; };

private:

double C ;

};

Figure 5.3. Simple linear capacitor implementation (con-
tinued)
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class rlcVectorCompute

: public Xyce::Device::VectorComputeInterface

{
public:

rlcVectorCompute(double R, double L, double C)

: R (R),

L (L),

C (C)

{
jacStamp.resize(4);

jacStamp[node1].resize(1);

jacStamp[node1][0] = branch;

jacStamp[node2].resize(2);

jacStamp[node2][0]=node2;

jacStamp[node2][1]=nodeInt;

jacStamp[nodeInt].resize(3);

jacStamp[nodeInt][0]=node2;

jacStamp[nodeInt][1]=nodeInt;

jacStamp[nodeInt][2]=branch;

jacStamp[branch].resize(3);

jacStamp[branch][0]=node1;

jacStamp[branch][1]=nodeInt;

jacStamp[branch][2]=branch;

};

Figure 5.4. Serial RLC implementation (constructor)
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virtual bool computeXyceVectors(std::vector<double> & sV,

double t,

std::vector<double> & F,

std::vector<double> & Q,

std::vector<double> & B,

std::vector<std::vector<double> > & dFdX,

std::vector<std::vector<double> > & dQdX)

{
int numVars=sV.size();

F.resize(numVars);

Q.resize(numVars);

B.clear();

dFdX.resize(numVars);

dQdX.resize(numVars);

for (int i=0; i<numVars; i++)

{
dFdX[i].resize(numVars);

dQdX[i].resize(numVars);

}
F[node1] = sV[branch];

F[node2] = 0.0;

F[nodeInt] = -sV[branch];

F[branch] = sV[branch]*R - (sV[node1]-sV[nodeInt]);

Q[node1] = 0.0;

Q[node2] = -C *(sV[nodeInt]-sV[node2]);

Q[nodeInt] = C *(sV[nodeInt]-sV[node2]);

Q[branch] = L *sV[branch];

Figure 5.5. Serial RLC implementation (computation)
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dFdX[node1][node1] = 0.0;

dFdX[node1][node2] = 0.0;

dFdX[node1][nodeInt] = 0.0;

dFdX[node1][branch] = 1.0;

dFdX[node2][node1] = 0.0;

dFdX[node2][node2] = 0.0;

dFdX[node2][nodeInt] = 0.0;

dFdX[node2][branch] = 0.0;

dFdX[nodeInt][node1] = 0.0;

dFdX[nodeInt][node2] = 0.0;

dFdX[nodeInt][nodeInt] = 0.0;

dFdX[nodeInt][branch] = 1.0;

dFdX[branch][node1] = -1.0;

dFdX[branch][node2] = 0.0;

dFdX[branch][nodeInt] = 1.0;

dFdX[branch][branch] = R ;

dQdX[node1][node1] = 0.0;

dQdX[node1][node2] = 0.0;

dQdX[node1][nodeInt] = 0.0;

dQdX[node1][branch] = 0.0;

dQdX[node2][node1] = 0.0;

dQdX[node2][node2] = C ;

dQdX[node2][nodeInt] = -C ;

dQdX[node2][branch] = 0.0;

dQdX[nodeInt][node1] = 0.0;

dQdX[nodeInt][node2] = -C

dQdX[nodeInt][nodeInt] = C ;

dQdX[nodeInt][branch] = 0.0;

dQdX[branch][node1] = 0.0;

dQdX[branch][node2] = 0.0;

dQdX[branch][nodeInt] = 0.0;

dQdX[branch][branch] = L ;

return true;

};

Figure 5.6. Serial RLC implementation (computation, con-
tinued)
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public:

std::vector< std::vector<int> > jacStamp;

private:

double R ;

double L ;

double C ;

static const int node1=0;

static const int node2=1;

static const int nodeInt=2;

static const int branch=3;

};

Figure 5.7. Serial RLC implementation (class variables)

5.2 Finite-Element Code Examples

This section describes an approach for coupling a FEM analysis code to a circuit us-
ing the computeXyceVectors callback API described in section 4.2.1. There are two key
steps consisting of 1) incorporating the values in solutionVars provided by Xyce and 2)
providing the corresponding device current response and associated derivtives (Jacobian
contributions) based on the FEM analysis back to Xyce. The approach described here is
currently employed by the Aleph and ALEGRA physics codes with more details provided
in [7].

It is important to recognize that representing a high-fidelity mesh-based device as a
lumped circuit element requires both an expansion of lumped circuit node information
from Xyce to the FEM analysis and a complementary coarsening (or lumping) of mesh-
based information from the FEM analysis back to Xyce. The former is achieved by as-
sociating a netlist circuit node with an equipotential conductor surface in the mesh-based
description, i.e. all mesh nodes belonging to the conductor surface have the same voltage
at any given time. The voltage values for each equipotential conductor are provided by
the solutionVars data in the computeXyceVectors callback method. The reverse step of
coarsening mesh-based information into a single value of charge or current at a circuit
node is done by the analysis code performing an appropriate surface integral consistent
with the physical model and the finite-element method. The result of these surface in-
tegrations are passed back to Xyce in the ~F , ~Q, and ~B vectors (along with Jacobian
contributions to d~F

dX
and d ~Q

dX
).
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Incorporating Xyce Data

Aleph and ALEGRA both model their internal potential field using a quasistatic assumption
with governing equation

∇ · (ε∇φ) = s

where φ is the scalar potential or voltage, ε is the material permittivity, and s accounts
for either dielectric material in ALEGRA or charged particle density in Aleph. The electric
field is computed as the gradient of the scalar potential field as ~E = −∇φ.

Recognizing that the governing electrostatic equation is linear, it can be decomposed into
n + 1 subproblems suitable to coupling to the electric circuit. For each conductor Ci, the
following homogeneous problem can be solved

∇ · ε∇φi = 0 with φi = δij on conductor Cj .

for all i, j = 1 to n with n being the total number of conductors in the mesh-based problem.
The remaining equation for φn+1 captures the effects of the source term and takes the
form

∇ · ε∇φn+1 = s with φn+1 = 0 on all conductors Cj .

These potentials are then superposed to compute the potential field solution using

φ =
n∑
j

Vjφj + φn+1

where Vj are the unknown voltages on each conductor Cj and are supplied by Xyce in
the solutionVars vector in the computeXyceVectors call back function.

Computing Application Reponse DAE Contributions

Once the scalar potential field has been computed, the responses supplied by the FEM
application to Xyce can be computed as the value of charge Qi on each conductor Ci.
This takes the form of a surface integral over each conductor surface,

Qi =

∫
Ci

(
~E · ~n

)
da .

Using the superposed form of the scalar potential solution, the surface charge can be
expressed as

Qi =
∑
j

KijVj + Si
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where
Kij = −

∮
Ci

(ε∇φj · ~n) da

and
Si = −

∮
Ci

(ε∇φn+1 · ~n) da

with ~n being an outward pointing unit vector normal to the conductor surface. These
values of Qi can be supplied to Xyce in the ~Q response vector of the computeXyceVectors

call back function. Alternatively, currents can be supplied in the ~F response vector after
differentiating the expression for Qi with respect to time to obtain the current entering the
ith conductor.

More details for how the surface integrations can be performed by leveraging the native
FEM methodology along with desireable properties of Kij and Si and how to achieve them
can be found in [7],[8],[9],[10].
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