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Abstract

This document is intended to contain a detailed description of the mathematical
formulation of Xyce , a massively parallel SPICE-style circuit simulator developed at
Sandia National Laboratories. The target audience of this document are people in
the role of “service provider”. An example of such a person would be a linear solver
expert who is spending a small fraction of his time developing solver algorithms for
Xyce . Such a person probably is not an expert in circuit simulation, and would benefit
from an description of the equations solved by Xyce . In this document, modified nodal
analysis (MNA) is described in detail, with a number of examples. Issues that are
unique to circuit simulation, such as voltage limiting, are also described in detail.
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1 Introduction
This document describes how circuit problems are formulated and solved in Xyce , a mas-
sively parallel analog circuit simulator. This document was motivated by the need to ad-
dress common questions, asked by people new to the Xyce research/development effort.
The prerequisite for understanding this document is some experience in numerical simula-
tion, but not necessarily circuit simulation.

This is not intended to be an exhaustive treatment of circuit theory. What is presented
here is a detailed summary (with examples) of how circuit problems are posed in Xyce .
This includes how the problem is formulated, what equations are solved, and some of the
techniques for obtaining the solution. There are many time integration, nonlinear and linear
solver solution techniques available inside of Xyce , and most of them are not described
in this document. The solution techniques described have been limited to those for which
one or more of the following is true:

1. The technique changes the set of equations being solved.

2. The technique is (apparently) unique to circuit simulation.

3. The technique is not well described by the literature.

One such technique, voltage limiting, is described in the nonlinear solver section. Another
such technique, state variable condensation, is described in the time integration section.

2 Basics
If viewed abstractly, transient circuit problems are solved similarly to transient implicit partial
differential equation (PDE) problems. There are three nested solvers: a time integrator, a
nonlinear solver, and a linear solver. The relationship between the three nested solvers is
illustrated in Figure 1.

Like a PDE problem, a circuit problem is based upon a topology. However, unlike a PDE
problem, the topology is derived from an arbitrary circuit network connectivity, rather than a
mesh. As such, the circuit topologies are generally much more heterogeneous than mesh-
based PDE topologies. Strang [13] describes some of the analogies between circuits and
PDE problems.

3 Circuit Problems
In this section, Kirchhoff’s Laws, are described. Also, Modified Nodal Analysis (MNA) is
introduced. The end of this section includes a linear circuit example.
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Figure 1. Xyce solver structure.

3.1 Kirchhoff’s Laws

Circuit networks are subject to Kirchhoff’s Current Law (KCL) and Kirchhoff’s Voltage Law
(KVL). Kirchhoff’s current law specifies that at any node in a circuit the sum of the branch
currents into/out of the node must equal zero. This is expressed by equation (1).

N1∑
i=0

Ii = 0, (1)

where N1 is the number of branch currents into/out of a circuit node. An illustration this
equation for a single circuit node can be found in Figure 2. Equation (1) enforces the
conservation of charge, as current is a measure of how much charge flows through a wire.
It is also equivalent to stating that the divergence of current around a circuit node equals
zero. Equation 1 will hold for every node in a circuit. This naturally leads to a set of coupled
simultaneous equations, one for each circuit node.

Kirchhoff’s voltage law (KVL) states that the sum of the branch voltage drops around a
closed loop of a circuit should equal zero. A graphical representation of KVL can be found
in Figure 3. In the figure, there are four circuit nodes, and three closed loops. The three
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loops are defined by nodes (1,2,4), nodes (2,3,4), and nodes (1,2,3,4). As with KCL, KVL
can lead to a large set of coupled simulataneous equations, similar to Equations 3- 5.

B1∑
i=0

Vi = 0 (2)

V12 + V24 + V41 = 0 (3)

V23 + V34 + V42 = 0 (4)

V12 + V23 + V34 + V41 = 0 (5)

where B1 is the number of branches in a closed loop. The subscripts used in Equations 3- 5
denote the two nodes defining the respective branch.

Figure 2. KCL for a single circuit node.

Figure 3. KVL for closed circuit loops. Equations 3- 5 correspond
to this figure.

There are many different ways of formulating a system of equations to solve circuit prob-
lems. Some formulations, like the tableau formulation, explicitly include a full set of KCL
and KVL equations. However, it is possible to combine KCL and KVL laws into a com-
pact formulation because most branch currents are directly functions of their respective
branch voltages. The formulation described in the next section, the modified KCL formu-
lation, doesn’t include any explicit KVL equations, as they are implicitly enforced by the
formulation.

11
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3.2 The modified KCL formulation

Circuit problems are usually solved on a computer using the “modified KCL formulation”.
This is also sometimes referred to as modified nodal analysis (MNA). This is the formulation
used in all of the common circuit simulators, such as Spice3f5, as well as Xyce . Modified
nodal analysis, as well as several other types of circuit analysis, is described in detail by
Vlach [14] and Chua [6]. The original paper describing this technique is by Ho [12] .

To best describe the modified KCL formulation, the unmodified KCL formulation (hence-
forth the KCL formulation) will be described first. In the KCL formulation, for every node
(except the ground node) of the circuit, one KCL equation must be satisfied. For a circuit of
N nodes, there will be a minimum of N − 1 equations. There will also be a voltage variable
for each node of the circuit, resulting in a minimum of N − 1 variables. Most currents be-
tween circuit nodes can be expressed as a function of the voltage drop between the nodes.
The simplest example of this is the current through a linear resistor. Consider the resistor
in Figure 4, which is connected between 2 circuit nodes.

Figure 4. Resistor device.

The current through this resistor is defined by Ohm’s law, or I = G · V12. G is the con-
ductance of the resistor (or 1/R, where R is the resistance of the resistor), I is the current
through the resistor, and V12 = V1 − V2 is the voltage drop across the resistor.

Most currents in a circuit can be expressed using this same type of expression (I = G · V ,
or more generally I = G(V )·V ), in which currents are a function of voltage. Devices whose
currents can be expressed in this way are also sometimes said to have conductance or,
in the case of small signal analysis, admittance representations. Likewise, a matrix that
consists of nothing but conductance (G ) terms is sometimes referred to as a conductance
matrix or (respectively) an admittance matrix. In the circuit simulation literature, these
terms are often used instead of the term Jacobian matrix. Devices that have a conductance
(Ohm’s law) representation include resistors, capacitors, diodes as well as most transistor
models.

3.3 The “modified” part of “modified KCL”

The modified KCL formulation is similar to the KCL formulation, but requires at least one
equation that is not a KCL equation. There are almost always non-Ohmic devices in a
circuit, so additional non-KCL equations have to be added to the equation set. New vari-
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ables are added to compliment these new auxiliary equations, and are generally current
variables, rather than voltage variables.

The most common example of a non-Ohmic device is the independent voltage source,
which imposes a predefined voltage drop across two circuit nodes, and is analogous to a
Dirichlet boundary condition in a PDE problem. Because the current through the source
is completely independent of this voltage drop, one cannot use an Ohm’s law expression
to describe it. That is, unlike most currents in the circuit, it cannot be inferred from nodal
voltages. As a result, the current has to be included as a solution variable.

Figure 5. Independent voltage source.

Consider the voltage source illustrated in Figure 5. This source is connected to nodes 1
and 2, and so it has to be accounted for in the KCL equations for each of these nodes.
The auxiliary, non-KCL equation enforces the voltage drop: V2 − V1 = Vdrop. The source
current, which is the auxilliary solution variable, is summed into the KCL equation for each
of the two nodes. This enforces that the current flowing into the source from node 1 is
equal to the current flowing out of the source to node 2.

3.4 A simple modified KCL example

For this example, a very simple linear circuit is illustrated in Figure 6 (For simplicity, all the
example circuits in this document are variations of this circuit). The circuit is assumed not
to have any time dependent elements (e.g. capacitors) and all of the devices in the circuit
are linear, so it is not necessary to consider time integration or nonlinear solver issues.

In this example there two linear resistors and one independent voltage source. The three
solution variables are the voltage at node 1 (V1 ), the voltage at node 2 (V2 ) and the current
through the voltage source ( IV src). The voltage of the ground node (node 0) is assumed
to be zero volts, so V0 is not needed as a solution variable. The ground node is never
included as a variable in an analog circuit simulation. The reason for this is that voltage
(electrostatic potential) is a relative quantity, and it isn’t meaningful without a reference
point. By convention, the ground node is always considered to be the reference, at zero
volts. Without it, there would be an infinite number of solutions to the problem.

For the three solution variables there are three corresponding equations — the KCL equa-
tions for node 1 and 2, and the voltage drop equation for the voltage source. These three
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Figure 6. Simple linear, steady-state circuit.

equations are given by:

KCL equation for node 1:

N1∑
i=0

Ii = 0, (6)

where N1 is the number of branch currents going into/out of node 1. The current through
resistor RA is given by:

IRA
= (V2 − V1)/RA = (V2 − V1) ·GA, (7)

where GA is the conductance:

GA = 1/RA. (8)

The current through the voltage source is assumed to be whatever is required to satisfy
the KCL equation. Thus, the total KCL equation is given by:

IV src − (V2 − V1) ·GA = 0. (9)

14
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KCL equation for node 2:

The sum of the currents into node 2 also must sum to zero, but now instead of the voltage
source, the second branch current is through RB. So the total KCL equation for node 2 is
given by:

(V2 − V1) ·GA − (V0 − V2) ·GB = 0. (10)

Since V0 is the ground node and assumed to be zero, this simplifies to:

(V2 − V1) ·GA + V2 ·GB = 0. (11)

Voltage drop equation:

The voltage source simply enforces that the voltage difference between node 1 and ground
is held to a predefined constant: Vdrop. Voltage source values may vary with time (as a sine
wave, for example), but for this example we assume it to be constant in time. The voltage
drop equation is given by:

V1 − Vdrop = 0. (12)

Linear system:

This system of three equations can be represented by a matrix equation, which is given
by:  GA −GA 1

−GA GA + GB 0
1 0 0

 V1

V2

IV src

 =

 0
0

Vdrop

 , (13)

where V1 is the voltage at node 1, V2 is the voltage at node 2, and IV src is the current
through the independent voltage source. These are the three solution variables of this
formulation of the problem. Most circuit problems are nonlinear and are typically solved
with some form of Newton’s method. Even though this example is linear, it is instructive to
show how this problem would be set up for the more general nonlinear case. Recall that
for Newton’s method, a linear system is solved for each step of a Newton loop:

J∆x = −f (14)

where J is the Jacobian matrix for f , ∆x is the update vector to be applied to the solution
vector, x, and f is the residual vector. At each Newton step, equation (14) is solved to
obtain ∆x, and the solution vector is updated by evaluating this expression:

xk+1 = xk + ∆xk+1 (15)
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where k is the step index. For the current example, the terms in ( 14, 15) are given as
follows:

f =

 f1

f2

f3

 =

 KCL equation, node 1
KCL equation, node 2

Voltage Drop constraint equation


=

 IV src − (V2 − V1) ·GA

(V2 − V1) ·GA + V2 ·GB

V1 − Vdrop

 (16)

J =

 δf1/δV1 δf1/δV2 δf1/δIV src

δf2/δV1 δf2/δV1 δf2/δIV src

δf3/δV1 δf3/δV2 δf3/δIV src

 =

 GA −GA 1
−GA GA + GB 0

1 0 0

 (17)

∆x =

 ∆V1

∆V2

∆IV src

 and x =

 V1

V2

IV src

 . (18)

Please note that the subscripts on f are meant to denote the index into the vector f . The
subscripts on V are meant to denote the nodal index for the respective voltage. Finally,
the subscripts on G are meant to refer to the resistor index. In this document, resistors will
always be denoted by letters (A, B, C) rather than numbers.

The KCL equations are current (I) equations, and their respective solution variables are
voltage (V ) variables, so most of the δf/δx terms that comprise the Jacobian matrix are
going to be of the general form:

δf

δx
=

δI

δV
= G (19)

Where G is a conductance. It is only for non-Ohmic terms in f , such as the voltage source
equation, that Jacobian elements will not be in units of conductance.

Therefore, the presence of the voltage source (which necessitates a modified KCL form)
changes the structure of the Jacobian matrix, J, a great deal. There are now some non-
conductance matrix contributions, which are of a fixed magnitude, 1.0. Also, the third
diagonal element is zero. Both of these issues can result in the linear system being more
difficult to solve, but can be addressed by scaling the problem and by matrix reordering.
This example illustrates part of why circuit matrices are often ill conditioned, as for a typical
digital circuit most conductances are much smaller than 1.0. A typical conductance could
be around 1.0e-08 or smaller. Furthermore, the respective magnitudes of the voltage and
current variables in the solution may be quite different (many orders of magnitude) and this
is reflected in their associated matrix entries.

As noted, in this particular example, the two resistors are linear, so the problem is solved
with a single Newton iteration. Most circuit problems, however, have nonlinear elements,
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requiring multiple iterations. Some simple examples of nonlinear circuits can be found in
the next section.

4 Nonlinear circuits
Most circuits contain nonlinear elements. A common example of a nonlinear device is the
diode, shown in Figure 7. Like resistors and capacitors, they exist in circuit models both as
stand-alone devices and also as sub-components of larger, more complex devices, such
as transistors.

Figure 7. Diode.

Diodes are good conductors when the current flows in one direction, but poor conductors
when the current flows in the opposite direction. In the simplest approximation, the current
through a diode is modeled as an exponential function of the voltage drop across the two
terminals. The diode current is given by:

ID = IS

[
exp

(
V12

Vth

)
− 1

]
(20)

IS is a constant known as the saturation current (a typical value is 1.0 × 10−14). V12 =
(V1−V2) is the voltage drop across the diode. Vth is the thermal voltage and is, essentially,
temperature expressed in units of eV. At room temperature it has a value of about 0.025.
A plot of a typical diode current with respect to voltage is given in Figure 8. (Note that in
circuit modeling, most devices are modeled using current as a function of voltage. If you
read the circuit simulation literature, you will see a lot of plots of this nature). Note also,
that the figure includes a breakdown current for voltages below -4.0 volts, but the example
equations presented here do not include breakdown current effects.

4.1 Example: Nonlinear Circuit Problem

An example diode circuit is shown in Figure 9. This is the same circuit as was described
in the previous section, with the exception that the linear resistor RA has been replaced
with a diode (which can be thought of as a nonlinear resistor). The system of equations is
similar to that of the linear problem. The main difference comes from the handling of the
current between node 1 and node 2.
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Figure 8. Diode I-V characteristic.

KCL equation for node 1:

Recall:

N1∑
i=0

Ii = 0 (21)

As before, N1 is the number of branch currents going into/out-of node 1. The current
through the diode is given by equation (20). The current through the voltage source, like
in the previous example, is assumed to be whatever it needs to be to satisfy the KCL
equation. The total KCL equation for node 1 is therefore given by:

IV src + ID = IV src + IS

[
exp

(
V12

Vth

)
− 1

]
= 0 (22)

KCL equation for node 2:

The sum of the currents into node 2 also must sum to zero, but now instead of the voltage
source, the second branch current is through RB . So the total KCL equation for node 2 is
given by:
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Figure 9. Diode circuit.

IRB
− IS

[
exp

(
V12

Vth

)
− 1

]
= V2 ·GB − IS

[
exp

(
V12

Vth

)
− 1

]
= 0 (23)

Voltage drop equation:

The voltage drop equation is the same as before (12):

V1 − Vdrop = 0 (24)

Linear system:

The linear system to be solved at each Newton step is similar to that of the linear case and
can be represented by:

J∆x = −f (25)
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 GD −GD 1
−GD GD + GB 0

1 0 0

 ∆V1

∆V2

∆IV src

 = −

 IV src + IS [exp(V12/Vth)− 1]
V2 ·GB − IS [exp(V12/Vth)− 1]

V1 − Vdrop

 (26)

However, now GD (formerly GA in the linear example) is a nonlinear, rather than constant,
quantity. GD is given by:

GD =
dID

dV1

(
= −dID

dV2

)
=

IS

Vth
exp

(
V12

Vth

)
=

IS

Vth
exp

(
V1 − V2

Vth

)
(27)

The system of nonlinear equations is solved in Xyce using Newton’s method. Generally,
circuits including lots of exponential I-V relationships require some enhancement to New-
ton’s method, such as a line search. A discussion of the various nonlinear solver options
in Xyce is beyond the scope of this document (see [8] for the available options and their
use).

One nonlinear solution method is worth special attention: voltage limiting. This approach
is somewhat unique to circuit simulation and is covered in the next section. In many cir-
cuit codes (almost any code based on SPICE), voltage limiting is the only Newton solver
enhancement.

4.2 Voltage Limiting

Voltage limiting is a method for enhancing the nonlinear solve portion of a circuit simula-
tion. The idea behind it is to prevent voltage drops in some of the semiconductor devices
from changing too much from one Newton step to the next. It is the only nonlinear solver
enhancement available in Spice3f5, and it is hardcoded to always be invoked. It appears
to have been used in some of the earliest circuit simulators [10]. For a Xyce developer, it
is important to understand voltage limiting, as it is an unusual technique with a number of
consequences. In practice, it has proven to be a very effective method for obtaining difficult
solutions, but it is incompatible with most conventional nonlinear solver enhancements. As
will be shown in this section, there are three reasons for this incompatibility.

1. Voltage limiting directly changes the right hand side vector used by the Newton it-
eration, so that it contains more than just f . It changes the set of equations to be
solved.

2. Voltage limiting results in a different Newton update to the solution vector, but it does
so in an inconsistent way. As a result, it is difficult to reproduce it using a technique
applied to the entire solution vector. For example, using xk+1 = xk + α · ∆x and
varying the magnitude of the scalar α will not yield the same result.
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3. The limiting relies on the previous Newton step size, meaning that it is a function of
the path taken to the current solution. This means that any technique using back-
tracking would be subject to hysteresis.

As Xyce and Spice3f5 use different formulations for the Newton solve, there are algebraic
differences between the two codes in voltage limiting implementation. In this section, the
Spice3f5 implementation of voltage limiting will be described first, followed by a description
of the implementation in Xyce .

Voltage Limiting in Spice3f5

In Spice3f5, the solver solves directly for the new value of the solution at each nonlinear
step, rather than solving for the update, which is more standard for nonlinear solvers. Most
traditional nonlinear solvers will solve this nonlinear system:

J∆xk+1 = −f (28)

∆xk+1 = xk+1 − xk (29)

The index, k, is the Newton iteration step number. In contrast, the Spice3f5 nonlinear
iteration is accomplished by solving this equivalent linear system:

Jxk+1 = −f + Jxk (30)

Recall that most of the elements of are nodal voltages, most of the elements of f are
currents and most of the elements of J are in units of conductance.

Unfortunately, the Spice3f5 approach to Newton’s method means that it is impossible (or
at least difficult) to apply traditional nonlinear solver libraries (such as NOX [3]). The right
hand side of the Equation 30 can no longer be assumed to be −f , as it contains the Jxk

terms.

In Spice3f5, to implement voltage limiting, an analysis is performed at the beginning of each
Newton step, to determine if the previous step resulted in any junction voltage changes that
were too large. (A junction voltage is the difference between two connected nodal voltages.
An example would be a voltage drop across a diode) In the event that some of them were
too large, portions of xi are replaced with values that are acceptable to the limiting scheme.
Then after xi has been modified, the calculation proceeds as though this modified xi is the
correct one. J and f are both calculated using this modified version of xi . In a sense, the
code goes into denial.
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It should be noted that this is slightly more complicated than it may first appear, because
all of this is done in terms of junction voltages (voltage drops between nodes), not nodal
voltages. Nodal voltages are what actually exist as distinct elements of the solution vector
xi, but junction voltages are what most devices actually care about. If we consider the
diode, again, recall the expressions for diode current and the Jacobian contribution are:

ID = IS

[
exp

(
V12

Vth

)
− 1

]
(31)

GD =
IS

Vth
exp

(
V12

Vth

)
(32)

Both ID and GD are functions of V12 = V1 − V2, which is a junction voltage. When a
circuit code calculates the contributions of a diode to J and f , it first obtains V1 and V2

from the solution vector, and then immediately obtains V12. From that point onward in the
calculation, V1 and V2 are ignored and everything is calculated as a function of V12. This is
typical in all Spice3f5-style analytical device models.

Figure 10. Diode circuit with resistor in parallel.

In practice, the Jxk term on the right hand side of (30) is not handled by doing a formal
matrix-vector multiply, so it is easy to implement a junction voltage based limiting scheme.
To illustrate this, consider the diode example from Figure 10. This is the same diode circuit
as from Figure 9, only an extra nonlinear resistor, RA, has been added in parallel with the
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diode. (The extra resistor has been added in order to illustrate one of the more subtle
aspects of voltage limiting.) The number of nodes is the same as before, and the number
of solution variables is also the same, but the number of branch currents to be considered
for the KCL equations of node 1 and 2 has increased.

The difference between the nonlinear resistor RA, and the linear resistor RB, is that for
RA: IA 6= GA · V12, but for RB : IB = GB · V20. To solve this problem in Spice3f5, the linear
system from equation (30) to be solved at each Newton step (without voltage limiting) is:

Jxk+1 = −

 Ik
V src + IS

[
exp

(
V k

12/Vth

)
− 1

]
+ IA

GB · V k
2 − IS

[
exp

(
V k

12/Vth

)
− 1

]
− IA

V k
1 − Vdrop


+

 GD + GA −GD −GA 1
−GD −GA GD + GA + GB 0

1 0 0

 V k
1

V k
2

Ik
V src

 (33)

where:

J =

 GD + GA −GD −GA 1
−GD −GA GD + GA + GB 0

1 0 0

 (34)

and:

xk+1 =

 V k+1
1

V k+1
2

Ik+1
V src

 (35)

Note that the Jacobian elements are all evaluated in terms of old (iteration k) variables.
That is:

J = J(xk) (36)

Recall that GA and GB are constant for the linear resistor. This next linear system is slightly
more representative of the way the problem is actually implemented in the code:

Jxk+1 =

−

 Ik
V src + IS

[
exp

(
V k

12/Vth

)
− 1

]
+ IA −GD · V k

12 −GA · V k
12 − Ik

V src

GB · V k
2 − IS

[
exp

(
V k

12/Vth

)
− 1

]
− IA + GD · V k

12 + GA · V k
12 −GB · V k

2

V k
1 − Vdrop − V k

1

 (37)

The right hand side terms have been combined. Rewriting, in terms of junction voltages,
and after canceling terms:
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Jxk+1 = −

 IS

[
exp

(
V k

12/Vth

)
− 1

]
+ IA −GD · V k

12 −GA · V k
12

−IS

[
exp

(
V k

12/Vth

)
− 1

]
− IA + GD · V k

12 + GA · V k
12

−Vdrop

 (38)

Note that the linear resistor contributions have vanished from the right hand side, but the
nonlinear ones remain. In practice, there are no linear resistor contributions to the right
hand side in Spice3f5 implementation.

In most codes, the matrix equation is set up on a device-by-device basis. The simulation
program stores all of the devices for a given circuit and loops through them in the process
of setting up the matrix and right hand side vector by way of summation. In this example,
if the order that the four devices appear in the list is: diode, voltage source, RA, and RB,
then the linear system would be at each stage:

After the diode load:

 GD −GD 0
−GD GD 0

0 0 0

 V k+1
1

V k+1
2

Ik+1
V src

 = −

 IS

[
exp

(
V k

12/Vth

)
− 1

]
−GD · V k

12

−IS

[
exp

(
V k

12/Vth

)
− 1

]
+ GD · V k

12

0

 (39)

After the voltage source load:

 GD −GD 1
−GD GD 0

1 0 0

xk+1 = −

 IS

[
exp

(
V k

12/Vth

)
− 1

]
−GD · V k

12

−IS

[
exp

(
V k

12/Vth

)
− 1

]
+ GD · V k

12

−Vdrop

 (40)

After the nonlinear resistor, RA load:

 GD + GA −GD −GA 1
−GD −GA GD + GA 0

1 0 0

xk+1 =

−

 IS

[
exp

(
V k

12/Vth

)
− 1

]
−GD · V k

12 + IA −GA · V k
12

−IS

[
exp

(
V k

12/Vth

)
− 1

]
+ GD · V k

12 − IA + GA · V k
12

−Vdrop

 (41)

And, finally, after the resistor, RB, load:

 GD + GA −GD −GA 1
−GD −GA GD + GA + GB 0

1 0 0

xk+1 =
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−

 IS

[
exp

(
V k

12/Vth

)
− 1

]
−GD · V k

12 + IA −GA · V k
12

−IS

[
exp

(
V k

12/Vth

)
− 1

]
+ GD · V k

12 − IA + GA · V k
12

−Vdrop

 (42)

The main reason for describing the device-by-device load is to illustrate that the load cal-
culations for each device are largely independent of each other.

As noted, voltage limiting involves the code checking the old junction voltages, such as
V old

12 , and replacing them with different values if necessary. The voltage limiting procedure
for a single device, at each nonlinear step is illustrated in the flow chart in Figure 11.

Figure 11. Voltage limiting flowchart.

As the load procedure is done on a device-by-device basis, the decision to replace an old
junction voltage is also done on a device-by-device basis. Not all devices have voltage lim-
iter functions and those that do generally do not all have the same voltage limiter functions.
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For example, consider the current example in which voltage limiting is applied in the diode
but not in RA. The resulting linear equation is:

 GD + GA −GD −GA 1
−GD −GA GD + GA + GB 0

1 0 0

xk+1 =

−


IS

[
exp

(
V̂ k

12/Vth

)
− 1

]
−GD · V̂ k

12 + IA −GA · V k
12

−IS

[
exp

(
V̂ k

12/Vth

)
− 1

]
+ GD · V̂ k

12 − IA + GA · V k
12

−Vdrop

 (43)

Note that for all the terms associated with the diode, V k
12 has been replaced by V̂ k

12 . As
such, the voltage drop used in the diode calculation is different than that used in the RA

calculation, even though they are attached to the same nodes of the circuit. It does not
modify the old (iteration k) solution vector in a consistent manner. It was to demonstrate
this issue that RA was added to this example circuit. Voltage limiting is very similar to con-
ventional nonlinear enhancements, such as constraint backtracking. However, a constraint
backtracking scheme (which is applied outside of the load procedure, and could not easily
include this inconsistency) would not be able to exactly reproduce it. Of course, it may be
preferable to avoid such an inconsistency.

Generally, the voltage-limiting technique is used for semiconductor device models only,
such as diodes and transistors (e.g., BJTs and MOSFETs), which may be highly nonlinear.
Voltage limiting rules are designed to prevent junction voltages from changing too much
between iterations, and the extent to which they are allowed to change is usually a function
of the device’s I-V characteristic. In general, if the device is in a regime in which dI

dV is
large, the limits are more restrictive than if the device is in a regime in which dI

dV is small.
As such, the limit imposed on V k+1

12 is a function of V k
12 and because the point is to constrain

the change from Newton step to Newton step, it is also a function of V k−1
12 . This points to

another important issue. This particular type of constraint is dependent not just on the
current values in the solution vector, but the path taken by the solver to get there. As a
result, there is hysteresis in the solution technique.

Voltage Limiting in Xyce

As noted, for a variety of reasons Xyce uses a more traditional approach to obtain the
solution to the nonlinear problem f(x) = 0:

J∆xk+1 = −f , where (44)

∆xk+1 = xk+1 − xk. (45)
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Initially, voltage limiting was not a planned feature for Xyce , in part because the nonlin-
ear solver was designed to use the traditional Newton iteration, as described by Equa-
tion 44. Once the value of voltage limiting became apparent, it was necessary to reformu-
late Spice3f5 implementation to work in Xyce .

For the nonlinear iteration k, the original “unlimited” solution vector is given by xk, the
intermediate limited solution vector is given by x̂k+1, and the final solution vector at the
end of the iteration is given by xk+1. Thus, for a Newton step that includes voltage limiting,
the total change from the beginning of the step to the end is:

∆xk+1
total = ∆xk+1

newton + ∆x̂k+1 (46)

where:

∆x̂k+1 = x̂k+1 − xk (47)

and:

∆xk+1
newton = xk+1 − x̂k+1 (48)

∆x̂k+1 represents the change in the solution due to voltage limiting, ∆xk+1
newton represents

the change due to the solution of the matrix equation, and ∆xk+1
total is the total change over

the course of the Newton step. The linear equation to be solved is now:

J∆xk+1
total = −f + J∆x̂k+1 (49)

This equation has been obtained by adding J∆x̂k+1 to both sides of the original Newton
step equation.

The calculations performed at each Newton step are very similar using this approach as
they were for the Spice3f5 case. The Xyce version of equation (43) is given by:

J∆xk+1
total = −


IS

[
exp

(
V̂ k+1

12 /Vth

)
− 1

]
+ IA −GD ·∆V̂ k+1

12

−IS

[
exp

(
V̂ k+1

12 /Vth

)
− 1

]
− IA + GD ·∆V̂ k+1

12

Vk+1
1 − Vdrop

 (50)

Or, alternatively:
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J∆xk+1
total = −


IS

[
exp

(
V̂ k+1

12 /Vth

)
− 1

]
+ IA

−IS

[
exp

(
V̂ k+1

12 /Vth

)
− 1

]
− IA

V k+1
1 − Vdrop

 +

 GD · V̂ k+1
12

−GD · V̂ k+1
12

0

 (51)

J∆xk+1
total = −


IS

[
exp

(
V̂ k+1

12 /Vth

)
− 1

]
+ IA

−IS

[
exp

(
V̂ k+1

12 /Vth

)
− 1

]
− IA

V k+1
1 − Vdrop


+

 GD −GD 0
−GD GD 0

0 0 0

 ∆V̂ k+1
1

∆V̂ k+1
2

∆Îk+1
V src

 (52)

One nice feature of this formulation is that as the Newton algorithm approaches conver-
gence, the values for ∆xk+1

total become much smaller. By solving for ∆xk+1 rather than xk+1,
it is easier to resolve the small changes in the solution that occur during the final iterations.
Also, as most nonlinear solver libraries and algorithms are designed for this (∆x) approach,
it is much easier to take advantage of them. Finally, the final (J∆x̂k+1) term on the right
hand side of equation (52) can easily be stored in a separate vector than the first (−f ) term,
so algorithms depending upon f are impacted less than in the other case.

Additional Notes

Xyce has a large number of different nonlinear solver options, including damped Newton,
modified Newton, inexact-Newton, constraint backtracking, and gradient-based methods.
A complete list of options, and a guide to usage is contained in [8]. In general, most
nonlinear solver strategies are incompatible with voltage limiting, either because of the
unorthodox right hand side vector, or because of the hysteresis introduced by the limiters.
Some future work may include finding ways to combine the effect of the limiters with some
of the other methods. The voltage limiter technique has been one of the most effective
techniques, especially for semiconductor circuits.

5 Time Dependent Circuits
In practice, most circuits contain a number of time dependent elements, and many of
those elements (capacitors and inductors) are described by ordinary differential equations
(ODEs) that include time derivative terms. For example, the current in a linear capacitor is
given by:

IC =
dq

dt
(53)
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Capacitors are particularly ubiquitous, as not only are they usually present as distinct de-
vices, but they also appear as subcomponents in every semiconductor device model. While
the inclusion of such devices requires that the mathematical formulation include ODEs, the
overall formulation is still based upon modified nodal analysis, and as such, the set of
equations to be solved contains a number of purely algebraic equations. These include
the voltage drop equation for a voltage source, or any KCL equation that includes only re-
sistor currents. The set of equations, therefore, is a set of differential-algebraic equations
(DAEs), where those that are purely algebraic are considered to be the constraints.

There is a lot of literature devoted to describing DAEs and methods for their solution [5, 4].
For the most part, that material will not be described here as it is beyond the scope of
this document. Most systems of equations resulting from circuit theory can be cast as
DAEs of index one, and fortunately the techniques for solving DAEs of index one are fairly
well understood. It is possible, particularly in circuits containing operational amplifiers, to
obtain DAEs of much higher index [5], but at the moment such circuits are not possible
to simulate in Xyce , so they will not be considered here. Xyce and Spice3f5 both use a
condensed form of the circuit equations that will be described in the third subsection of this
section. This condensed form appears to be a standard technique for circuit simulation,
and has some obvious advantages, but for the most part this condensed form has not
been described in the literature. In practice, it appears to work reasonably well, but the
numerical implications (stability, accuracy, etc.) of using such a form are not entirely clear
at this point.

5.1 Traditional Index-1 DAE Formulation for the Linear
Case

Differential Algebraic Equations (DAEs) generally have the form:

f
(
x,

dx
dt

, t

)
= 0 (54)

For the linear case, this is often presented in the form of a matrix equation:

f = Ax + B
dx
dt

+ r(t) = 0 (55)

In equation (55), A and B are matrices and r(t) is a source term. This formalism can
easily be applied to the linear circuit that is presented in Figure 12. This circuit is the same
as all of the previous example circuits, except that now a capacitor sits between nodes 1
and 2. The capacitor, CA, is a time dependent device, and has a current defined to be:

ICA
=

dq

dt
(56)
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where q is the charge stored by the capacitor, which is defined to be:

q = CA · V12 (57)

where CA is the capacitance and V12 = V1 − V2 is the voltage drop across the capacitor.
For the linear case (where CA is constant), equation (56) can be simplified to be:

ICA
= CA

dV12

dt
(58)

For the linear case, the linear system consists of three equations and three unknowns.
The system is very similar to that described by equations (6) through (13), except that a
capacitor has replaced one of the resistors. Thus, the three solution variables are given
by: (V1, V2, IV src) The three equations, like before, consist of KCL equations for nodes 1
and 2, plus a voltage drop equation for the independent source.

Figure 12. Linear time dependent circuit.

KCL equation for node 1:

IV src − CA ·
d

dt

(
V i+1

21

)
= IV src − CA ·

d

dt

(
V i+1

2 − V i+1
1

)
= 0 (59)
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KCL equation for node 2:

CA ·
d

dt

(
V i+1

21

)
+ V i+1

2 ·GB = CA ·
d

dt

(
V i+1

2 − V i+1
1

)
+ V i+1

2 ·GB = 0 (60)

Voltage drop equation:

V i+1
1 − Vdrop = 0 (61)

Full system:

This set of equations can be rewritten in the form of equation (55).

f
(
x,

dx
dt

, t

)
= 0 =

 0 0 1
0 GB 0
1 0 0

 V i+1
1

V i+1
2

Ii+1
V src

 +

 CA −CA 0
−CA CA 0

0 0 0

 d

dt

 V i+1
1

V i+1
2

Ii+1
V src

 +

 0
0

−Vdrop

 (62)

The addition of the capacitor requires that dV12/dt be evaluated. Typically, this is done
using a backward differentiation formula (BDF). For the purposes of this example we will
use the backward Euler method.

dV12

dt
= α

(
V i+1

12 − V i
12

)
(63)

Where α = 1/h, and h is the time step size. The factor, α, is the leading coefficient of
the BDF formula, and will have a different form depending on the choice of BDF. Incorpo-
rating equation (63) into equations (59-61) results in the KCL equations being recast as
differential algebraic equations:

KCL equation for node 1:

Ii+1
V src − α · CA ·

[(
V i+1

2 − V i+1
1

)
−

(
V i

2 − V i
1

)]
= 0 (64)

KCL equation for node 2:

α · CA ·
[(

V i+1
2 − V i+1

1

)
−

(
V i

2 − V i
1

)]
+ V i+1

2 ·GB = 0 (65)
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Voltage drop equation:

V i+1
1 − Vdrop = 0 (66)

Full system:

The matrix equation then becomes (for the backward Euler case):

f
(
x,

dx
dt

, t

)
= [A + αB]xi+1 + αBxi + r(t) = 0 (67)

 0 0 1
0 GB 0
1 0 0

 + α

 CA −CA 0
−CA CA 0

0 0 0

 V i+1
1

V i+1
2

Ii+1
V src


+α

 CA −CA 0
−CA CA 0

0 0 0

 V i
1

V i
2

Ii
V src

 +

 0
0

−Vdrop

 = 0 (68)

This is a linear problem, so the Jacobian matrix is given by:

J = [A + αB] =

 0 0 1
0 GB 0
1 0 0

 + α

 CA −CA 0
−CA CA 0

0 0 0

 (69)

This example formulation is a DAE system of index zero. Recall that Petzold [5] defines
the index of a DAE to be, the minimum number of times that all or part of (54) must be
differentiated with respect to t in order to determine dx/dt as a continuous function of (x, t),
is the index of the DAE (54). Also, she defines a DAE with an index of 0 to be equivalent
to a system of ODEs. In this example, the two KCL equations are differential equations
and the voltage drop equation from the voltage source is a constraint equation. However,
the one constraint equation can be removed easily, without performing any differentiations.
The voltage source sets the first node to a particular voltage, so including V1 and IV src in
the set of equations isn’t necessary. The problem can thus be represented as:

f = CA ·
d

dt

(
V i+1

2 − VV src

)
+ V i+1

2 ·GB = 0 (70)

or:

f = CA ·
dV i+1

2

dt
+ V i+1

2 ·GB = 0 (71)
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Equation (71) is a single implicit ODE. This conversion to an ODE, which removes the
algebraic constraints, results in the need for an initial condition on V2. It should be noted
that most circuit problems do not result in a DAE of index zero. Instead, the systems are
typically of index one, and some examples of higher index systems will be given in following
sections. For linear circuits, the DAE formulation just described (before the removal of the
voltage source equation) matches that of Xyce . In the next section, the most obvious way
of handling the nonlinear case will be addressed.

5.2 Traditional Index-1 DAE Formulation for the Nonlinear
Case

The linear example can be extended to the nonlinear case by assuming the capacitor is
a nonlinear capacitor, and that Ci+1 = f(V i+1

1 , V i+1
2 ). The simplification of equation (58)

is no longer valid, and dq/dt 6= CdV/dt, so it is necessary to keep track of q as a variable
with respect to time. From a physical standpoint, q must be calculated as a function of time
in order to enforce charge conservation. The easiest way to accomplish this is to add q to
the system of solution variables, x, and add the equation defining q as a function of V to
the system of equations, f . The DAE form is extended for the nonlinear case:

f = Ax + B
dx
dt

+ p(x) + r(t) = 0 (72)

The term p(x) represents the nonlinear terms. For the purposes of this example, assume
that the charge on CA, q, is given by:

q = C0

(
1 + V 2

21

)
= C0

[
1 + (V2 − V1)

2
]

(73)

C0 is a constant prefactor and not representative of the entire capacitance. The capaci-
tance for CA is given by:

CA =
q

V21
=

C0 + C0V
2
21

V21
=

C0

V21
+ C0 · V21 (74)

Equation (73) is added to f . The full system of equations is now:


0 0 1 0
0 GB 0 0
1 0 0 0
0 0 0 1




V i+1
1

V i+1
2

Ii+1
V src

qi+1

 +


0 0 0 1
0 0 0 −1
0 0 0 0
0 0 0 0

 d

dt


V i+1

1

V i+1
2

Ii+1
V src

qi+1


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+


0
0
0

−C0

[
1 + (V2 − V1)

2
]

 +


0
0

−Vdrop

0

 = 0 (75)

If, like before, we assume backward Euler ( dq/dt = α(qi+1 − qi)), the set of equations can
be rewritten as:

[A + αB]xi+1 + βB + p
(
xi+1

)
+ r(t) = 0 (76)

where:

A =


0 0 1 0
0 GB 0 0
1 0 0 0
0 0 0 1

 (77)

B =


0 0 0 1
0 0 0 −1
0 0 0 0
0 0 0 0

 (78)

β = −α


V i

1

V i
2

Ii
V src

qi

 (79)

p(x) =


0
0
0

−C0

[
1 + (V2 − V1)

2
]

 (80)

r(t) =


0
0

−Vdrop

0

 (81)

Unlike in the linear case, this set of equations is a set of DAEs of index one. The con-
version of this DAE to an index zero DAE will be described in the next section. It should
be noted that if a different BDF formula (other than backward Euler) were used to obtain
time derivatives, the only thing that would change in the above set of equations would be
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equation (79), the equation for β. For the nonlinear case, the Jacobian matrix is defined
as:

J = A + αB +
δp

δxi+1
(82)

In the current example, the last term of equation (82) is given by:

δp
δxi+1

=


0 0 0 0
0 0 0 0
0 0 0 0

2C0(V2 − V1) 2C0(V1 − V2) 0 0

 (83)

The final form for the Jacobian in this example is:

J =


0 0 1 α
0 GB 0 −α
1 0 0 0

2C0(V2 − V1) 2C0(V1 − V2) 0 1

 (84)

The formulation described here is not the one used in Xyce or Spice3f5, but it is related.
The time integration package used within Xyce was originally designed with the intention
of using this formulation. For a variety of reasons (explained in the next section), a differ-
ent, more compact formulation is used instead. The consequences of using this compact
scheme, in terms of its effect on error analysis, step-size control, stability, etc., are not clear
at this point.

5.3 Condensed DAE formulation in Xyce : State Variables

The formulation used in Xyce (and Spice3f5) is more compact than that of the previous
section, in that is not considered as a member of the solution vector, x. Removing q
requires that the charge equation (73) be combined into some of the other equations of the
system. If one takes the time derivative of the charge equation, and then substitutes the
result into the appropriate KCL equations, the resulting set of equations is:

f
(
x,

dx
dt

, t

)
= 0 =

 0 0 1
0 GB 0
1 0 0

 V i+1
1

V i+1
2

Ii+1
V src

 +
d

dt

 C0

[
1 + (V2 − V1)2

]
−C0

[
1 + (V2 − V1)2

]
0

i+1

+

 0
0

−Vdrop

 (85)
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This procedure appears to have the effect of reducing the index from one to zero, because
now equation (85) is in a similar form to that of equation (62) before the application of the
BDF. It is still a DAE, however, and not an ODE system. To reduce it further to an ODE
system, one should follow the same procedure as outlined in equations (70) and (71), and
remove the constraint equation for the voltage source.

Generally the lower the index of a DAE, the easier it is to solve, although there can be
unintended consequences. Another (perhaps more important) benefit of this condensation
is that the size of the linear system has been reduced. As will be explained later, this type
of equation elimination results in a very significant problem size reduction for most large
circuits. This reduction bears some similarity to the derivation of the pressure-Poisson
equation in fluid mechanics [4], and the use of the range-space method in constrained
optimization problems [11] . In the case of circuit equations, this reduction does not remove
all the constraint equations of the system, so the set of equations is still a set of DAEs, but
with index zero.

One issue of interest is that now the variables that are part of the solution vector, x, are
no longer the same as the variables for which we need time derivatives. In this particular
example, we need the time derivative of the capacitor charge, q, but we do not need time
derivatives for V1, V2 or IV src. In this document, variables that are part of x will be referred
to as solution variables, while variables that are not part of x but are needed by the time
integration algorithm will be referred to as “state variables”.

This choice of naming convention is consistent with that of the data structures in Spice3f5,
but it has the potential to cause confusion. The term, state variable, is often used as
the equivalent of the term, solution variable, in much of the circuit simulation literature
[9, 7], and other contexts. Additionally, there exists a mathematical formulation of the
circuit equations known as the “state variable formulation”, in which the circuit equations
are an implicit ODE system. Chua and Lin describe this formulation in detail [6]. This
formulation is not commonly used in modern circuit simulators, as it has been proven that
some circuits cannot be represented in this form.

The inexact Jacobian used with the condensed form

The condensed form described in the previous section has been implemented with one
type of approximation made in the calculation of the Jacobian matrix. There is nothing
about the condensed form that requires the use of this approximation, but it facilitates the
implementation. This approximation is made in Spice3f5 and Xyce for the Jacobian matrix
contributions associated with a nonlinear capacitor. The two-terminal nonlinear capacitor
contributes the following stencil to the linear system:
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

...
...

. . . δIC/δV1 . . . δIC/δV2 . . .
...

...
. . . −δIC/δV1 . . . −δIC/δV2 . . .

...
...





...
∆V1

...
∆V2

...


= −



...
IC
...

−IC
...


(86)

Generally, δIC/δV1 = −δIC/δV2, so all the terms in the Jacobian stencil are of the same
magnitude. Recall that the capacitor current is given by:

IC =
dq

dt
(87)

For the linear capacitor, this can be simplified to:

IC =
dV12

dt
(88)

Time derivatives are approximated, in general using a BDF:

dV i+1

dt
= αV i+1 + βV i + γV i−1 + . . . (89)

For the purposes of calculating the Jacobian terms, only the leading term of the BDF is
needed, as the partial derivatives used in the matrix are all in terms if new (i+1) variables.
So, for the linear capacitor, the form of the Jacobian term is:

δI

δV
= αC (90)

For the nonlinear capacitor, C is dependent upon the capacitor voltage at i + 1, so for
that case, equation (90) is not correct. However, in Spice3f5 and Xyce it is often (but not
always) used anyway. For nonlinear problems it is often not necessary that the Jacobian
be perfect, and that appears to be the case for circuit problems. However, this may turn
out to be inadequate for optimization studies in the future [11] . It is not necessary to use
this approximation in the compact state variable formulation, but implementation is easier,
as it is not necessary to calculate the partial derivative of C with respect to V . Also, all
capacitors types, both linear and nonlinear, are now handled in the same way.

Reduction in Jacobian size resulting form the condensed form

The impact of using the condensed formulation is significant enough that real life circuit
codes (such as commercial implementations of SPICE [1], and non-SPICE circuit codes
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Figure 13. MOSFET model equivalent circuit.

such as SABER [2]) always use it. The Jacobian matrix size can often be reduced by an
order of magnitude, especially for highly interconnected digital circuits. For example, most
MOSFET models are based on the equivalent circuit shown in Figure 13, which includes
five internal nonlinear capacitors.

A large circuit recently simulated in Xyce contained about 70,000 MOSFETs, and (com-
paratively speaking) not much else. If the condensed formulation had not been used, the
number of solution variables would have been over 350,000, requiring a 350,000 x 350,000
sparse Jacobian matrix. However, with state variables, the total number of equations was
on the order of 25,000, requiring (obviously) a much smaller 25,000 x 25,000 sparse Jaco-
bian matrix. Unlike charge variables, which are not shared between devices, nodal voltage
variables can be shared by many devices. As a result, if charge variables are eliminated,
the number of solution variables can often be surprisingly small, possibly much smaller
than the total number of devices in the circuit.

Additional Notes

As in the case of the nonlinear solver, Xyce also has many different options for time in-
tegration. Time integration algorithms include backward Euler, BDF2, and Trapezoid rule.
Additionally, the time integration package in Xyce employs a robust discontinuity capturing
scheme. A complete list of current features, as well as instructions, is contained in the
Xyce User’s Guide [8].
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It should be noted that currently, the only option in Xyce is the condensed DAE form.
The option for using the non-condensed traditional formulation, presented in the previous
section, is not currently available (Xyce Release 2.0). As of this writing, the Xyce time
integrator is in the process of being redesigned, so other formulations may be available in
the future.
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